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SPACECRAFT THERMAL CONTROL. MODELLING AND TESTING 

STC goals and means 

It is well known that any kind of equipment is damaged if subjected to too-hot or too-cold an environment; 

the main goal of a spacecraft thermal control (STC) is to prevent overheating and undercooling in every 

part of equipment, at all phases of the spacecraft mission (mostly within the space environment). 

 

The typical solution adopted in STC to avoid overheating (which cause permanent damage), is to choose 

cover materials with appropriate thermo-optical properties to keep the system basically cool, and to 

compensate the eventual undercooling (particularly at eclipses) by means of distributed electrical heaters. 

Undercooling, usually do not cause permanent damage but just a dormant non-operational state (which may 

be critical to the mission, however). Some over-dimensioning is always applied to cover contingencies. The 

problem with this simple solution is that electrical power is generally scarce in spacecraft (and more during 

http://en.wikipedia.org/wiki/Spacecraft_thermal_control
http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Control.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/STC%20systems,%20missions%20and%20needs.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3Space%20environment.pdf
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eclipse periods, when no solar power can be generated), what closely connects the STC system with the 

power management system (concerning battery capacity sizing). 

 

The thermal control system (TCS) of internal items (e.g. electronic boxes) finally depends on the outer 

system boundaries. The final need may be: 

 To reduce or increase the absorbed radiations from the environmental (sun, planet, other parts of 

the spacecraft). With an appropriate choice of solar-absorptance, , and IR-emissivity,  (really, just 

the  ratio), for the external surfaces, it is easy to get steady temperatures from 50 ºC to 150 ºC 

at Earth-Sun distances. The best to avoid thermal radiation absorption (and emission) is a multilayer 

insulation blanket (MLI). 

 To reduce or increase heat losses to the environment. All active internal items dissipate. Batteries 

are the worst: they may dissipate 102..105 W/m3, and must always be maintained at about 0..30 ºC 

while charging (or 10..50 ºC while discharging). Powerful microchips typically dissipate 10..20 

W/cm2. Radiators are the primary TCS components for ultimate heat rejection; a second-surface 

mirror is a good radiator because it reflects a lot of solar radiation and emits a lot of infrared radiation 

(primary mirrors have low emissivity). 

 To reduce or increase heat transfer between internal items, or keep them nearly isothermal (e.g. 

optical equipment). To bridge thermal expansion gaps, or to provide thermal switches. External 

elements like solar arrays and antennas are nearly isolated from the main body. 

 Thermal control technologies may be classified in accordance with the thermal path: heat sources, 

heat storage, heat transportation, heat rejection (but energy is not always flowing downward the 

temperature scale; e.g. thermo-electric coolers), etc. 

 

It should be mentioned that, besides the thermal loads, TCS equipment must withstand mechanical and 

chemical loads; e.g. particle impacts, particularly across micrometeoroid belts (e.g. towards GEO or deeper 

space). MLI blankets provide some protection against cosmic dust and some micro-meteoroid impacts. 

 

Classical TCS are based on radiative energy emission from the spacecraft envelop (the total hemispherical 

emissive power-density of a black-body is Mbb=T4), usually concentrated on some surfaces specifically 

designed for the purpose of heat rejection (radiators), with some metal conduction along cold plates from 

equipment inside. In modern TCS, however, two-phase technologies have become the standard tools for 

spacecraft thermal control: heat pipes and loop heat pipes, micro electromechanic (MEMS) two-phase fluid 

loops, phase-change materials (PCM), heat pumps, cryogenics… 

 

Liquid evaporation and solid ablation are the most efficient cooling means, but rarely used because of the 

mass penalty: water droplet evaporation was used on the Shuttle during take-off and landing (where the 

radiators were not working), water ice sublimation is used to cool space suits during extravehicular activity 

(EVA), and ablation is used in all re-entry probes and vehicles other than the re-usable Shuttle. 

http://en.wikipedia.org/wiki/Multi-layer_insulation
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STC design procedure 

There is a great variety of actions related to a given spacecraft thermal control project. The traditional steps 

followed in the thermal design of a spacecraft may be (in chronological order): 

 Identify your components (at least the most sensitive items) within the overall system: 

 Identify spacecraft geometry and dimensions. Compile data of similar systems (missions, 

platforms, and payload details). 

 Identify component data: geometry and dimensions, mass and thermal capacity, thermal 

conductivity of materials and joints, and surface thermo-optical properties. 

 Identify thermal requirements from mission and operation data (e.g. power dissipation laws). 

 Perform a thermal analysis to find the expected temperature field and evolution: 

 Identify thermal environment inputs and outputs, and heat paths between elements. 

 Assume default values for unspecified characteristics, from previous experience (e.g. properties 

for passive  thermal control technologies). 

 Identify thermal worst cases. 

 Make a thermal mathematical model (TMM) for parametric simulation. At first stages in the 

design, a crude analytical model may be appropriate (geometrical and material details may not 

be available), but most of the times, a detailed numerical model must be developed. 

 Check your solution for consistency (by energy balances, by limit values, by sensitivity to 

parameter changes...). 

 Propose a suitable design: 

 Propose a basic solution to be integrated in the current overall spacecraft design: radiator sizing 

and design, heaters, mass and power budgets, and special STC items. 

 Propose enhancements to the basic solution, identifying interactions of STC with other 

subsystems. 

 Iterate with new inputs from the other subsystems, and propose solutions to new problems (with 

the corresponding analysis that supports it). 

 Assure the design: 

 Propose on-board thermal control diagnostics to monitor proper operation during tests and flight 

operations. Plan to detect abnormal behaviour.  

 Verify predictions with tests, and refine the design if needed (an iterative process). 

Spacecraft thermal discretization 

The modelling approach in STC can be, in what concerns the space, time, and parameter discretization, 

continuous (for simple analytical models), discretized in a spatial network of nodes and node couplings, or 

statistical in nature (as for the Monte Carlo ray-tracing method used to compute radiative exchanges).  

 

Heat-transfer problems with non-trivial geometries are too complicated for analytical study, and one has to 

resort to numerical simulation, with space and time discretization along the following steps: 

 First, the spacecraft geometry must be defined, even if as a crude mock-up at early stages in 

design. A modular conception (subsystems and payloads) helps on the future refining process. 

 Then the geometry is discretized, dividing the system into small pieces or lumps which, in the 

finite difference method (FDM) are considered isothermal and represented by just one material 
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point, the node, and in the finite element method (FEM) are considered having a linear 

temperature field and represented by a few corner nodes. Additional nodes are usually added to 

represent the background environment, although for manual modelling they are usually 

considered apart. It is important to remember that a finer mesh will not improve accuracy beyond 

uncertainties in other data (e.g. thermo-optical coefficients). 

 Then the energy balance equation for each node is established, with the thermal capacity, heat 

dissipation and background loads ascribed to the node, and with the appropriate heat transfer 

couplings with the other nodes. 

 Time discretization provides a step-by-step updating temperature matrix, in terms of some initial 

conditions (maybe difficult to know) and the boundary conditions applied; a case study (trajectory 

and operations, must be specified. Boundary conditions are changing all the time, so, only 

representative situations are studied, but at least the worst hot case (maximum power and heat 

fluxes at end of life, EOL), and worst cold case (minimum power and heat fluxes at beginning of 

life, BOL), must be studied. 

 Assign particular power-dissipation profiles to each node (they may depend on eclipse timing, 

and unknown operations). 

 Ascribe thermal-connection properties to node pairs: conductance factors to adjacent nodes, 

radiation factors to field-of-view nodes, and convection coefficients to internal fluid media, if 

any. This task is independent of spacecraft trajectory for fixed-geometry spacecraft, but it is 

coupled to orbit and attitude motion when there are some deployed or pointing elements with 

relative motion to the spacecraft body. 

o Conductance couplings only depend on contact area between adjacent nodes and thermal 

conductivities of materials. 

o Radiation couplings depend on thermo-optical properties of surfaces, and viewing factors. 

 After this lengthy preparatory work, the system of local energy balances is solved for the node 

temperatures.  

 The output of the solver is visualized with appropriate computer-graphics tools, and extreme 

values automatically sorted. 

Preliminary thermal tasks 

Before any meaningful spacecraft thermal control design is attempted, there is a variety of tasks for the 

thermal engineers. From the simpler to more complex tasks, a list may be: 

 Find some specific material properties, e.g. thermal conductivity of a given composite material, or 

the freezing point of an on board propellant (e.g. hydrazine). 

 Solve simple heat-conduction problems, e.g. find the heat flow through a conical support between 

isothermal surfaces. Notice that the design goal may be varied (exemplified here with this planar 

and steady thermal-conduction problem), e.g.: 

  1 2 /Q kA T T L  , i.e. find the heat flux for a given set-up and T-field. 

  1 2 / )T T QL kA  , i.e. find the temperature corresponding to a given heat flux and set-up. 

Notice that our thermal sense (part of the touch sense) works more along balancing the heat 

flux than measuring the contact temperature, what depends on thermal conductivity of the 

http://imartinez.etsiae.upm.es/~isidoro/dat1/eLIQ.pdf
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object; that is why Galileo masterly stated that we should ascribe the same temperature to 

different objects standing in a room, like wood, metal, or stone, contrary to our sense feeling. 

  /k QL A T  , i.e. find an appropriate material that allows a prescribed heat flux with a 

given T-field in a given geometry. 

  1 2 /L kA T T Q  , i.e. find the thickness of insulation to achieve a certain heat flux with a 

given T-field in a prescribed geometry. 

 Solve simple thermal relaxation problems, e.g. find the heat-up time after powering some device. 

 Solve simple thermo-hydraulic problems, e.g. find the pumping power for a given fluid loop duty, 

or the Nusselt number dependence on Reynolds number. 

 Solve simple thermal-radiation problems, e.g. find the heat dissipation in a louver as a function of 

tilting, or the radiative coupling between a solar panel and a planet. 

 Solve simple thermal balance problems, e.g. find the steady temperature of an isothermal body in 

space as a function of orbit phase and attitude. 

 Solve more complex thermal problems, e.g. find the steady temperature field (basically the 

extreme temperatures) in a conductive shell in space, for different geometries, material properties, 

and external loads. 

 Solve full spacecraft thermal problems, e.g. accounting for transitories in power dissipation and 

thermal loads from the environment, variable geometries, etc. 

SPACECRAFT ENERGY BALANCE AND THERMAL BALANCE 

In the case of STC, it is often assumed that the mass of the system under study is invariant, either when 

considering the whole spacecraft or the smallest piece of equipment (e.g. propellant flow rates are not 

considered in thermal studies), so that the energy balance is that of a closed system, d dE t W Q  , where 

energy store is basically due to temperature change, dE/dt=mcdT/dt, though other types of energy store may 

be important (e.g. electrical store in batteries and condensers, thermal store in phase change materials, or 

other physic-chemical or nuclear modes of energy storage). The full open-system energy balance,

in-out in-outd dE t W Q h m    (where 
in-outm  are the mass flow-rates at the system frontier, and hin-out their 

enthalpie), is required to analyse thermal protection systems based on ablative processes (where mass is 

lost), and to analyse TCS with fluid flow, as in fluid loops, heat pipes, cryocooling, sublimators... 

 

The flow rate of work, W  (through the system frontier), may be an electrical input or output through 

umbilicals (e.g. heaters and solar cells), an electromagnetic input or output (solar cells, lasers, antennas), a 

mechanical input or output (e.g. by friction), etc. The flow rate of heat, Q  (through the system frontier), is 

always due to a temperature difference, and is traditionally split into conduction, convection, and radiation, 

the latter being the most complex and genuine effect in space thermal control.  

 

As most spacecraft incorporate photovoltaic cells, it is worth considering the following energy balance 

applicable to the whole spacecraft or to a piece of equipment, with thermal, electrical, and electromagnetic 

energy terms: 
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 th ele
net net em,net ele,net cond,net conv,net rad,net

d d d

dE dEdE
W Q W W Q Q Q

t t t
          (1) 

 

where only two types of internal energy storage are considered: thermal, Eth, and electrical, Eele (but not 

nuclear or mechanical storage); only two types of work flow are considered: em,netW , i.e. electromagnetic 

radiation (e.g. solar radiation, laser, or microwave radio-link, but not infrared, which is accounted as a heat 

flow), and ele,netW , i.e. electrical currents (through wires); finally, the three classical heat flow types are 

considered in (1): conduction through solids, fluid convection, and radiation. Notice that we here include 

solar radiation in the work term, as if it come from a large laser, in spite that of it being almost a perfect 

blackbody; the reason is that we intend to restrict our analysis of radiation heat transfer to thermal sources 

in the far infrared band of the EM-spectrum, leaving thermal sources in the visible and near-IR (the Sun), 

and non-thermal sources in any band (lasers in the visible or the infrared, microwaves, X-rays...) as work 

exchanges (independent on the system temperature).    

 

Thermal energy storage may be due to a temperature change or to a phase change; if the latter is excluded 

(but notice that phase-change materials are sometimes used not only to increase thermal inertia but to drive 

thermal switches), then dEth/dt=CdT/dt, where C=mc is the overall thermal capacity of the element. 

 

Electrical energy storage depends on the state of charge (SOC) of batteries (and electrical capacitors, if 

relevant). There are several methods to measure SOC, but none is perfect. The simplest is the voltage 

method, but it is only precise near full load or empty states, and it has to be complemented with the coulomb-

counting method. The voltage method is based on the dependence of the supply voltage, V, with SOC; it is 

a decreasing function (in the shape of a lying-down ) that depends also on the operating temperature, T, 

and current being drawn I; i.e. V=V(SOC,T,I). The coulomb-counting method (or current-integration 

method) is based on knowing an initial SOC (usually fully loaded), and integrating the drawn current, 

Idt=dQ (Q is here the electrical charge), what yields the SOC approximately, since some of the charge is 

converted to heat by internal leakage current. Neglecting this latter effect (which can be accounted for if 

the battery efficiency is known), the electrical energy storage can be approximated as dEele/dt=VdQ/dt, 

where V is the nominal voltage and Q the battery capacity (equivalent to a condenser electrical charge 

available to do work, electrochemical work in the case of batteries); maximum battery capacity, Qmax, is 

commonly given in A·h (1 Ah=3600 C), and SOC≡Q/Qmax, most often stated in percentage. Full-load 

energy stored is V·Q (e.g. a small battery pack of 4 kg for a 50 kg educational satellite may have 25 Ah at 

24 V, i.e. it accumulates Eele,max=QmaxV=25·24·3600=2.2 MJ=0.6 kWh). 

 

The total energy balance (1) may be split into an electrical energy balance (including EM terms because we 

really want them to split in work and heat terms), and a thermal energy balance, although some source and 

sink energy terms must be introduced, since only total energy is conservative: 

  

    ele
em,in em,out em,dis ele,in ele,out ele,dis

d

dQ
V W W W W W W

t
       (2) 

 em,dis ele,dis cond,net conv,net rad,net

d

d

T
C W W Q Q Q

t
      (3) 
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where Qele is the actual battery charge capacity, em,disW  is the dissipated direct-beam electromagnetic 

radiation, and ele,disW  is the dissipated electrical power, both contributing to heating (temperature increase), 

and which are traditionally quoted as dissipated ‘heat’, em,disQ and ele,disQ  (but recall that what enters to a 

resistor is electrical work, not heat). Thermal terms in (3) are typically one order of magnitude larger than 

electrical terms (electrical efficiency of solar cells is low), and this is the reason why the energy balance is 

often reduced to a thermal balance to a first approximation. 

 

Notice again that, with the two-band radiation model introduced in Heat transfer and thermal radiation 

modelling, radiation in the infrared band is accounted as heat and modelled as  4 4

rad 12 1 2Q R T T  , 

whereas radiation in the solar band is accounted as work (because it is at a much higher temperature than 

that of the object) and modelled as 
em frontalW EA , where  is the absorptance of the object to solar 

radiation, and E is the frontal irradiance, as explained below (it is not accounted as heat because it is not a 

‘temperature-difference’ term). 

 

For the typical case of thermal control of a satellite in orbit around a planet, the different energy inputs from 

the space environment (Fig. 1) may be: 

 Solar radiation (always understood as direct sunshine). Surface absorptance marks the fraction of 

incident radiation absorbed, usually heating the system, although a part may go out as generated 

electricity in solar cells.  

 Planetary albedo (solar reflection on a nearby planet or moon). Same effects as for direct solar 

radiation. 

 Planetary emission. Far-infrared radiation coming from a nearby planet or moon. 

 Reflected solar radiation from other parts in our spacecraft (e.g. solar panels, antenna, optical 

shrouds, deployed radiators…). 

 Reflected solar radiation from nearby spacecraft (e.g. a spacecraft approaching a space station), 

although this is usually a small transient phase irrelevant to thermal control. 

 Other ‘monochromatic’ radiations absorbed by the satellite (microwaves, X-rays...) are negligible 

in all common cases. 

 

As for the radiation output, if only the absorbed solar radiation (direct and albedo) is contemplated in the 

energy balance (not the total incident solar power), the only non-heat radiations emitted by a satellite are 

those used for communications (microwaves and lasers, including IR-lasers), since all the thermal 

radiations in the far-infrared band can be modelled as heat transfer terms with the background sky at 2.7 K, 

with the planet or moon in the surroundings, or with nearby spacecraft parts. Notice that another approach 

to deal with planet emission may be to account only for the absorbed part on the satellite surface, and then 

consider the surface emission to the whole 2 steradians; the difference is negligible because the planet size 

is much larger, and because inputs from the 2.7 K source are negligible.  

file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
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Fig. 1. Typical thermal control configuration: a spacecraft (SC) orbiting a planet or moon, 

from which albedo and planet emission may be important energy inputs, besides 

direct sunshine; spacecraft emission to the background space, at 2.7 K, is always 

important. 

 

To analyse in detail all the terms in the energy balance, it is better to start from a global approach and 

consider a complete spacecraft, before entering into the details of thermal balances for subsystems and 

elements. In any case, but particularly for global analysis, radiation characteristics (thermo-optical 

properties, planet properties, and other heat inputs) are averaged to simplify the problem. 

Averaging radiation inputs 

For planetary orbits, the three bodies Sun-planet-spacecraft are moving relative to each other along orbits 

that are described parametrically in terms of time. And it is not just a three points system but a three-solid 

system with rotational motions beside their translation motion. And spacecraft geometry may change with 

time due to mission requirements, notably solar panels, antennas, and radiators. And some of the time 

variations are unpredictable, the best example is albedo contribution from cloud coverage on Earth.  

 

Fortunately, thermal inertia of spacecraft parts act as a bass-pass filter that averages most of the thermal 

response to such rapidly changing scenario. For instance, a polar-LEO satellite may be exposed to big 

changes in radiation input when going from the Equator to the Poles in less than 25 minutes (96 minutes 

polar orbit): local Earth albedo may change from =0.05 over uncloudy regions of tropical oceans to =0.90 

over the Antarctic, and Earth IR emission too, with surface temperatures over 300 K over tropical lands to 

under 200 K over Antarctica. But these big changes have little influence on the thermal balance of the 

satellite, and only the most lightweight and decoupled spacecraft elements may follow such swift changes. 

 

It is customary in STC to use planet averaged properties (one representative temperature, constant albedo, 

and constant emissivity), and sometimes orbit averaged values for external and internal heat loads. When 

instantaneous values are computed, one usually understands ‘instantaneous’ to mean ‘several-minutes 

averaging’. 
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Global approach (the one spacecraft-node model) 

Solar input 

As explained under Space environment, solar energy impinging on a spacecraft can be approximated by a 

parallel beam irradiance, E, with a value at the standard Sun-Earth distance (i.e. the astronomical unit [ua], 

or AU; 1 ua=150·109 m) of E=1360 W/m2 (known as ‘the solar constant’, sometimes named Cs), and with 

a spectral distribution corresponding to a blackbody at 5800 K.  

 

Solar input on a spacecraft element may be difficult to calculate for complex geometries when shadows are 

cast from other parts, semi-transparent parts are interposed, or solar incident angles vary from point to point. 

We assume for the moment that all solar absorption is dissipated and heats the system, analysing later the 

case of solar cells. The easiest case to analyse is one side (recall that each face must be separately considered 

in radiative exchanges), of an opaque planar element (which becomes the generic case when surface 

discretization renders small patches quasi-planar), whose normal direction is tilted an angle [0,/2] from 

the Sun direction. A fraction of the incident solar energy is reflected and the rest is absorbed at the surface 

(within the first millimetre really) being totally dissipated and causing a heating effect equivalent to a ‘solar 

heat’ input:  

 

 frontal cos for 2, 0 otherwises sQ EA EA Q         (4) 

 

i.e. solar input is proportional to surface absorptance,  (=1 for a black-body), solar irradiance, E (E=1360 

W/m2 at 1 ua, decreasing with the square of the distance to the Sun), and surface projected area in the Sun 

direction, Aforntal,  

 

The collimated solar radiation can be applied to all solar planet flybys (Mercury orbit at perihelion distance 

is Rsp=0.31; 0.1 ua is equivalent to 10 Sun diameters); otherwise, the view factor approach can be always 

followed (e.g. a frontal planar surface of area A at a distance H from the centre of a sphere of radius R, 

radiating as a blackbody at temperature Ts, gets a power 4

12s sQ AF T  , with F12=(R/H)2; see View factor 

tabulations). 

 

The simplest thermal model for a spacecraft may be an isothermal spherical mass under vacuum, exposed 

to sunshine, without solar cells and far from any planet influence. Its thermal balance (3) can be written as: 

  

 
4

s,dis ele,dis frontal ele,dis

d

d
out

T
C W W Q EA Q A T

t
         (5) 

 

where C is the overall thermal capacity (C=mc, with typical values of c=1000 J/(kg·K)), T(t) is the 

temperature evolution sought, s,dis s frontalW Q EA   is the heating by absorption and dissipation of direct 

solar radiation (the only EM radiation input considered), ele,dis ele,disW Q  is the electrical power dissipated 

during its operation (e.g. from ground-loaded batteries, like in Sputnik),  is the  average emissivity of 

surfaces in the far-infrared range (recall that ≠ for different radiation bands), A is the whole emitting area 

(assumed without concavities), and =5.67·10-8 W/(m2·K4) is the Stefan-Bolzmann constant. Notice that 

file:///C:/Isidoro_W/tc3/Space%20environment.pdf
file:///C:/Isidoro_W/tc3/Radiation%20View%20factors.pdf
file:///C:/Isidoro_W/tc3/Radiation%20View%20factors.pdf
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we have used 4

outQ A T   instead of the proper heat radiation transfer  4 4

outQ A T T    , neglecting 

the small contribution form the cosmic background radiation temperature, T∞=2.7 K, and that a parallel 

solar beam was assumed. Finally notice that a passive object (without ele,disQ ) under permanent solar eclipse 

by a distant celestial body, would tend to equilibrate with background radiation at 2.7 K (this configuration 

can be advantageously used to keep a spacecraft at cryogenic temperatures, as has been done with the 

Herschel and Planck, and is intended for the James Webb Space Telescope, although the eclipse is not total 

in practice because Earth’s umbra cone only extends to 1.4·109 m and the Sun-Earth libration point is at 

1.5·109 m; besides, the spacecraft usually follow Lissajous orbits around those points, so that solar panels 

are still used to power them). 

Steady temperature 

If the solar input does not depend on time, and the dissipation term is neglected, then the temperature attains 

a stead value (often called ‘equilibrium’ temperature) given by: 

  

 

1

4
4 2 2 4

frontal0 4
4

E
EA A T E R R T T


       



 
       

 
 (6) 

 

which can be set in terms of the Sun temperature (Ts=5800 K), Sun radius (Rs=0.70·109 m), and Sun-to-

probe distance, Rs,p, when substituting E:  

  

 
2

4 s
s2

s,p s,p

4

4 2

s
s

R R
E T T T

R R





    (7) 

 

Exercise 1. Consider the variation of solar irradiance with distance to the Sun. Find: 

a) The solar irradiation and the steady temperature for a spherical black-body at the distance of 

each of the 8 planets, and compare with their mean surface temperature. 

b) Find the solar irradiance change at Earth’s perihelion and aphelion, and the steady temperature 

variation for a spherical blackbody. 

c) Find the solar irradiation and the steady temperature for a spherical blackbody at 0.28 ua (the 

expected perihelion of Solar Orbiter spacecraft).  

Sol.:   

a) The solar irradiation and the steady temperature for a spherical black-body at the distance of 

each of the 8 planets, and compare with their mean surface temperature. 

 Irradiation decreases with distance squared, as stated in Eq. (7). With the mean extra-terrestrial 

solar irradiance, E=1360 W/m2, and the data for mean radius for planet orbits, R[Mercury, 

Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune]=[0.38,0.72,1,1.52,5.19,9.51,19,30] ua, 

working in astronomical units ua (1 ua=150·109 m), we build Fig. E1, where the real mean 

surface temperature for the planets, T[Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 

Neptune]=[ 435,733,288,217,102,63,57,57] K, have been marked for comparison. 
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Fig. E1. Variation of solar irradiation and the steady temperature of a blackbody with distance to the Sun. 

Comparison with real mean surface temperature for the planets. 

 

 Notice how Venus real surface temperature (733 K) departs from blackbody calculations (329 

K), due to the large greenhouse effect there. 

 

b) Find the solar irradiance change at Earth’s perihelion and aphelion, and the steady temperature 

variation for a spherical blackbody. 

Earth’s orbit eccentricity is e=0.0167, so that, near 1 ua, E=E0(Rs-e/Rs-e,0)2= 

E0(1±e)2E0(1±2e)=1360·(1±2·0.0167)=1360±46 W/m2. The steady temperature variation for 

a spherical blackbody is Tst=[E/(4)]1/4=[E0(1±2e)/(4)]1/4=Tst,0(1±e/2)=279±2.3 K. Notice that 

a change of 1 W/m2 in E, yields a change of 0.05 ºC in Tst. 

 

c) Find the solar irradiation and the steady temperature for a spherical blackbody at 0.28 ua (the 

expected perihelion of Solar Orbiter spacecraft),  

 At 0.28 ua, E0.23=E1(1/0.28)2=1360·13=17.5 kW/m2. The steady energy balance for a spherical 

black-body is 
4 2 2 4

solar space frontal0 4Q Q EA A T E R R T         , and thus T=(E/(4))1/4= 

(17500/(4·5.67·10-8))1/4=527 K (254 ºC). Notice that the collimated beam model has been used, 

in spite of the closeness of the Sun. 

Effect of thermo-optical properties 

The easiest and cheapest method of thermal regulation in space is based on selecting surface finishing with 

appropriate thermo-optical properties; representative values can be found aside for the two-spectral-band 

model (explained in Heat transfer and thermal modelling). 

 

Exercise 2. Find the steady temperature for an isothermal sphere at geosynchronous orbit, neglecting Earth 

interactions, as a function of surface absorptance divided by surface emissivity, with application 

to a blackbody (=1/1), a white painting with =0.20/0.85, a black painting with 

=0.95/0.90, an aluminised painting with =0.30/0.30, a golden painting with 

=0.25/0.03, and a second surface mirror with =0.08/0.80. 

Sol.:  From the energy balance at the steady state, 
4 2 2 4

solar space frontal st st0 4Q Q EA A T E R R T             , one gets for the steady 

temperature of an isothermal sphere, Tst=[E/(4)]1/4, which is plotted in Fig. E2 as a function 

of the ratio /. 

file:///C:/Isidoro_W/dat1/Thermooptical.pdf
file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
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 Fig. E2. Variation of the steady temperature of an isothermal sphere with the ratio /. 

 

 For the different surface properties stated, the general solution, Tst=[E/(4)]1/4, takes the 

following values: Tst,bb=279 K, Tst,white=193 K, Tst,black=282 K, Tst,alum=275 K, Tst,gold=472 K, 

Tst,=0.7=255 K, and Tst,=0.7,=0.6=288 K. Notice how hot is the golden paint, and how cold is the 

second surface mirrors (SSM, also known as optical solar reflectors, OSR), which are widely 

used for radiators in space, which are made of a transparent layer (e.g. a 0.25 mm fused-quartz 

plate, or a Teflon film), metallised on the back with silver or aluminium, and bonded to a 

substrate support. 

Effect of solar cells 

The first solar-powered satellite was Vanguard-1, in Mar-1958 (the 4th satellite ever launched, after Sputnik 

1 in Oct-1957, Sputnik 2 in Nov-1957, and Explorer 1 in Jan-1958), shortly after the first practical 

photovoltaic cell was publicly demonstrated on 25 April 1954 at Bell Laboratories. 

 

Most spacecraft get their electrical power from photovoltaic solar panels (wall-mounted or deployed), 

because, in spite of their high first cost, they are the most efficient in terms of power/mass ratio, and the 

most reliable (no moving parts, wide operating temperature range, no need of cooling...). The reason to deal 

with them here, at this elementary stage in spacecraft thermal modelling, is the confusion that may arise 

between solar heating and electrical dissipation in energy balances like in Eq. (5).  

 

The main goal of solar cells is to produce electricity from sunshine, and the radiation-to-electricity energy 

efficiency is the ratio of the maximum power produced at 25 ºC,  max max
W VI , divided by the standard 

input irradiance, E, and surface area, A, i.e.:  

  

 
 

max
VI

EA
   (8) 

 

where the standard for space applications is mean extra-terrestrial irradiance, E=1360 W/m2 (also named 

as AM0 or air-mass-zero conditions) and the standard for ground applications is mean surface solar 

irradiance with 1.5 times the mean vertical clean air mass filter, E=1000 W/m2 (also named as AM1.5 or 

air-mass-one-point-five conditions). Typical efficiencies of space-qualified silicon solar cells (at AM0, in 

vacuum) are =0.15..0.20 (15..20%), but modern triple-junction GaAs cells reach =0.3 (30%). For solar 

panels, i.e. assemblies of solar cells connected in series and parallel to have a certain voltage and intensity, 

a packaging factor, Fpg, is introduced to account for the effective cell area relative to the panel area to be 

http://en.wikipedia.org/wiki/Solar_cell#History
http://en.wikipedia.org/wiki/Solar_cell#History
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used in (8), which includes the collector wirings and other connections; a typical value is Fpg=0.8). Solar 

cell efficiency decreases with temperature, typically some 0.04%/K (e.g. if it is =25% at 25 ºC, it falls to 

=23% at 75 ºC, the typical operating temperature of deployed solar panels in low Earth orbit).  

 

Solar cells should be facing solar radiation for maximum output, but this is not always possible. On small 

spacecraft, solar panels are fixed to the body, which may be spinning for attitude stabilization and thermal-

control homogenization. Larger spacecraft have detached solar panels, with the main body maintained 

permanently oriented towards the Earth (for observation and/or communications) and the solar wings 

oriented towards the Sun as much as possible; for an orbiting spacecraft, a deployed solar panel revolves 

around its axis 360º/orbit (the so-called alpha-gimbal). Besides, on larger spacecraft like the ISS, a 

secondary rotation (the so-called beta-gimbal) slowly rotates to match the orbit solar angle,  (or just beta 

angle, i.e. the angle from sunshine direction to the orbit plane); in the ISS, this is a two-month-period 

oscillation with some 100º amplitude side-to-side. 

 

The electrical balance (really the non-thermal balance (2), including electromagnetic radiation outside the 

far IR band, electrical energy, mechanical energy...), for a solar panel can be reduced to: 

  

 

 

frontal pg frontal

ele
em,in em,out em,dis ele,in ele,out ele,dis

0 0 0
0

em,dis s pg frontal th frontal

d
EA F EA

dE
W W W W W W

t

W Q F EA EA

 

  

  
       
  

   

    

 (9) 

 

i.e., the electromagnetic dissipation or ‘solar heat’ is an effective thermal absorptance, th, times irradiance 

times frontal area, since accumulation dEele and dissipation 
disW can be neglected in the panels (and there is 

no electrical input or electromagnetic output). Notice that solar absorptance  in (9), due to the photovoltaic 

semiconductor material (the protective cover glass, some 0.1 mm thin, is almost transparent to solar 

radiation), is defined in terms of reflectance  as =1, a measure independent of actual electric yield. 

Solar cell emissivity is dependent on the type of protective cover glass, with typical values in the range 

=0.7..0.9. 

 

However, if a global approach is followed and one selects the total system, including the solar panels, the 

electrical consumers, and the batteries, the electrical balance becomes:  

  

 frontal th frontal

ele
em,in em,out em,dis ele,in ele,out ele,dis

0 0 0
0

ele
pg frontal ele,dis

d

d

EA EA

dE
W W W W W W

t

dE
F EA W

t

 



   
        

  
  

  

 (10) 

 

showing that the accumulation in batteries compensates the electrical production (FpgEAfrontal) with the 

electrical consumption, ele,disW  (given by the operational procedures). The batteries themselves must be 

taken as consumers too, since they typically dissipate up to 10% of delivery power. Notice that if the solar 

http://en.wikipedia.org/wiki/Beta_angle
http://en.wikipedia.org/wiki/Beta_angle
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cells are in open circuit (producing no power) all the terms in the electrical balance are null, and all the 

absorption goes to heating, =th. 

 

The thermal balance (3) for a solar panel takes then the same form as for the whole spacecraft (in each case 

with their appropriate values, of course): 

  

 
4

em,dis ele,dis cond,net conv,net rad,net th frontal ele,dis

d

d

T
C W W Q Q Q EA Q A T

t
           (11) 

 

showing that the operational details for electricity consumption (the ‘electrical heat’),  ele,disQ t , must be 

known to solve the global energy balance (a crude first-order approximation is to consider ele,disQ =constant 

(equal to the mean electrical production of the solar panels). 

 

Exercise 3. Find the electrical power produced by an spherical satellite of 0.5 m in diameter, fully covered 

by solar cells of an efficiency =15% and a packaging factor Fpg=0.8, in a low Earth orbit 

without eclipses, and set the thermal balance, assuming an absorptance and emissivity of 

==0.75 for the solar cells, a thermal capacity of C=30 kJ/K for the satellite, and that the 

electrical dissipation is only important during 15 minutes of the orbit, and can be considered 

constant in that period.  

Sol.:  The solar panel produce ele pg frontalW F EA =0.15·0.8·1360·(0.252)=32 W all the time during 

the typical 90 minutes of a LEO period. If this electrical energy is to be consumed in 15 min, 

the rate must be 32·90/15=194 W. 

 The thermal balance takes the form: 

  

  

 

4

ele,dis s out ele,dis th frontal

3 9 4

dis

d

d

d
30·10 194 169 33 10

d

T
C Q Q Q Q EA A T

t

T
f t T

t

  



     

    

  

 

 with T in [K], where fdis(t) is a periodic step function equal to 0 except for a 15 min period 

during the orbit,   2

s th frontal 0.75 0.15·0.8 1370 0.25 169 WQ EA         is the thermal 

absorption of the solar panels (th=Fpg), and 
4 2 8 4 9 4

out 0.75 4 0.25 5.67 10 33 10Q A T T T              the satellite own emission. Notice 

that an initial temperature value is required to solve the energy balance in general, but the 

periodic solution (presented in Fig. E3, from a numerical simulation) does not depend on it. 

Notice that spacecraft temperature increases during electrical dissipation and decreases 

otherwise (when infrared emission surpasses solar input). 
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Fig. E3. Evolution of input loads ( ele,dis sQ Q ) and satellite temperature (T) after an initial value of 300 K. 

Detail of the periodic temperature evolution and its orbit mean. 

Effect of satellite geometry 

We found above the steady temperature an isothermal body would attain when exposed only to the Sun 

(and the background radiation environment). What about a different geometry, like a cube box or a plate? 

The answer is similar: 

  

 

1

4
4 frontal

frontal0
A E

EA A T T
A


  



 
     

 
 (12) 

 

although now the area ratio is no longer Afrontal/A=1/4 as for a sphere. 

 

Exercise 4. Find the steady temperature at 1 ua, for an isothermal blackbody with the following geometries: 

planar one-side surface (i.e. rear insulated), plate, cylinder, sphere, and cubic box in its three 

symmetric orientations.  

Sol.:  Steady energy balance for a body with frontal area Af and emitting area Ae: EAf=Ae(T4T
4), 

which, with =1 and =1, yields T=[(Af/Ae)(E/)]1/4.  

 For one-side planar surface of area A with its normal tilted an angle  to Sun rays, frontal area 

Af=Acos, and emitting area Ae=A, thence T=(cos E/)1/4, and for =0, T=[1360/(5.67·10-

8)]1/4=394 K=122 ºC. 

 For a plate emitting from both sides, Af=Acos and Ae=2A, thence T=((cos/2)E/)1/4, and for 

=0, T=332 K=59 ºC. 

 For a cylinder of diameter D and length L with its axis tilted an angle  to Sun rays, with all its 

surfaces emitting, Af=(D2/4)cos+DLsin)/2 and Ae=2D2/4+DL, thence 

T=(((cos/2+(L/D)sin)/(1+2L/D))E/)1/4, which, for L/D=1 and =0 yields, T=252 K=21 ºC, 

and for L/D=1 and =/2 yields, T=300 K=26 ºC. 

 For a sphere, Af=D2/4 and Ae=D2, thence T=((1/4)E/)1/4, and T=279 K=6 ºC. 

 For a frontal cube, i.e. an hexahedron of face area A, with all its surfaces emitting, Af=A and 

Ae=6A, thence T=((1/6)E/)1/4, and T=252 K=21 ºC. 

 For a cube tilted 45º, i.e. an hexahedron with two opposite edges and the Sun in the same plane, 

f 2A A  and Ae=6A, thence T=((sqrt(2)/6)E/)1/4, and T=275 K=2 ºC. 
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 For a cube pointing to the Sun, i.e. an hexahedron with two opposite vertices and the Sun in the 

same straight line (3 lit faces tilted 54.7º, instead of 2 lit faces tilted 45º in the previous case), 

f 3A A  and Ae=6A, thence T=((sqrt(3)/6)E/)1/4, and T=289 K=16 ºC. 

 Notice that only fully-convex surfaces have been considered; otherwise, view factors would 

enter into play. For instance, consider a hemispherical shell with its symmetry axis aligned with 

the Sun (it does not matter if it is the convex or the concave side facing the Sun), the energy 

balance is now: 

  
 

1
1

42
4

4

frontal 1 1, 2 2, 2

1, 2,

0
32

R E E
EA A F A F T T

R F F

  
  

 
 

 

   
            

 

 

 where F1,∞=1 and F2,∞=1/2 (View factor tables), resulting in T=300 K=27 ºC. Notice that a 

hollow hemisphere gets warmer than a spherical shell, having the same frontal area and exposed 

area (27 ºC instead of 6 ºC), because the concave part re-radiates to itself. 

 

 
Fig. E4. Different geometries analysed. 

 

Effect of a sunshield 

Everybody knows that the best way to protect from sunshine is a sunshield. The simplest example to model 

may be an infinite planar shield in between two infinite parallel planar plates at fix temperatures T1 and 

T2<T1, all surfaces assumed to be black bodies. Without the shield, the heat transfer is  4 4

12 1 2Q T T  , 

whereas in the case of the shield, when it gets at steady state at temperature Ti, its steady energy balance is 

   4 4 4 4

1, 2, 1 20 i i i iQ Q T T T T       , and thus  
1/4

4 4

1 2 2iT T T  
 

 and 1, ,2 1,2 2i iQ Q Q  , i.e. the 

heat transfer between the original surfaces has been halved.   

 

Notice that we have assumed fix temperatures in the above example; if not, details of the energy balance at 

each end plate would have influenced the problem. Also notice that, contrary to the result of the above 

example, the effect of geometry is important in most cases (even in the one-dimensional problem with 

cylindrical or spherical geometries, the radial position of a shield dominates the problem, as shown aside).     

Effect of a concavity 

If we compare the thermal balance of a spherical shell of radius R with that of a hemispherical shell of the 

same radius and pointing to the Sun, both objects considered isothermal black bodies subjected only to 

solar radiation in space, we soon realise that the hemisphere gets warmer because both get the same solar 

input (i.e. for a solar irradiance E, both, sphere and hemisphere, get ER2). However, the sphere freely 

emits 4R2(T4T∞4), which we may ascribe to its two convex hemispheres, whereas the hemisphere, which 

has two hemispherical surfaces emitting, the external one (exposed to the Sun and empty space) and the 

internal one (which not only sees the empty space but its own surface). We call surface 1 the sunlit 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/pr4/htm/c13/p051.html


 

Spacecraft thermal modelling and testing 17 

hemisphere, and surface 2 the hemisphere in shadow, the heat transfer from 2 to background space is 

 2 4 4

2, 2, 2Q R F T T     , with F2,∞<1 easily obtained from the reciprocity relation A2F2,3=A3F3,2 (see 

View factor algebra), where surface 3 is the auxiliary circle surface that would close the hemisphere to form 

a radiation closure and thus with F3,2=1. Thence, F2,∞=F2,3=A3F3,2/A2=R2·1/(2R2)=1/2, as in Exercise 4, 

above. 

 

Effect of planet: eclipse and own emission 

When in addition to our system (a spacecraft or a part of it) and the Sun, the presence of a third body is 

considered (a celestial body like a planet or moon, or an artificial object), several effects on the thermal 

balance of the former may take place: 

 Blocking the Sun, if the third body is in between, eclipsing our system from solar radiation sunshine 

(as the sunshield considered above), with the consequent cooling and loss of solar-panel power. 

 Reflecting sunshine (albedo), if the third body is on one side, what adds a heat source (and solar-

panel power, if any). This contribution is difficult to model because of the interplay of geometrical 

and thermo-optical variables, and the analysis is usually restricted to low altitude orbits, where 

albedo exitance is almost uniform in the whole field of view (e.g. from the 400 km of ISS altitude, 

only a surface patch 2300 km in diameter is seen).     

 Besides, at any position, the third body radiates in the infrared due to its own temperature, what is 

an additional heat input to our system (both during daytime and night-time). 

 

From those three effects, the most important is the eclipse, because it blocks the radiation from the Sun (a 

blackbody at 5800 K with good approximation), leaving instead the radiation from the planet, which may 

be approximated to a blackbody at a much lower temperature (between 100 K and 700 K in all cases). 

 

We only consider total eclipse (umbra region), since partial eclipse (penumbra region) is only important 

when the planet or moon is far from the spacecraft, or for very special orbits at low altitudes. 

 

Eclipse duration. Orbital solar angle 

Eclipse duration is studied aside in Orbital period and eclipse fraction, with the main result that, for circular 

orbits, the relative eclipse period, Te/To (eclipse duration divided by orbital period), as a function of relative 

orbit radius, h(H+R)/R, and of beta angle,  (angle between the orbital plane and the solar direction, 

negative for retrograde orbits, i.e. /2/2) is given by: 
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

  (13) 

 

where G=6.67·10-11 N·m2/kg2 is the universal gravitation constant, M is the mass of the planet (can be 

obtained from Planet and moon property tabulations), and the beta angle is =0 for any orbit passing 

through the subsolar point (i.e. when the Sun is in the orbit plane, which may happen at any orbital 

inclination, 0≤i≤), and =/2 when the orbital plane is perpendicular to Sun rays (i.e. when the satellite 

nadir follows the planet terminator, as for a polar orbit initiated at local dawn or dusk on an equinox).  

file:///C:/Isidoro_W/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/STC%20systems,%20missions%20and%20needs.pdf#_Toc255483726
file:///C:/Isidoro_W/tc3/Planet%20and%20moon%20properties.pdf
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If the angular position of the object along the circular orbit, , is measured starting from the direction nearer 

the Sun direction, the angles when eclipse starts, es, and eclipse ends, ee, are: 
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 (14) 

 

For instance, for a H=400 km orbit like that of the ISS, h(H+R)/R=1.063, maximum beta angle for eclipses 

to occur is max=/2arccos(1/h)=1.22=70.2º, therefore, any satellite at that altitude with an orbital 

inclination imaxmax=70.223.5=46.7º may potentially be sunlit during the whole orbit (the ISS has i=52º 

so that there are periods along the year without eclipse). For maximum eclipse duration (=0), eclipse starts 

at es=arccos( 21 1 h )=1.92=110º, and ends at ee=2es=4.4=250º. 

 

It is recommended to only use positive -angles (as done in (14), i.e. ee=2es, instead of ee=es), if 

variable  is to be used as a more convenient time variable, =t(2/To). Notice that solar input to orbiting 

spacecraft with eclipse period has a discontinuity at eclipse-start and eclipse-end (we neglect the fraction 

of time in penumbra), and should be programmed accordingly, i.e. direct solar input, 
frontalsQ A E , 

becomes:  

 

 
es ee
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 (15) 

 

where the symbol em,in,solarW  has been used to point out that this energy input is not properly a heat exchange 

(it is an electromagnetic input that might be nearly fully converted to work), but the symbol 
sQ  (solar heat 

input) is commonly used. In (15) b and Afrontal are the body-surface solar-absorptance and the frontal area 

(recall that b should be substituted by b,th for solar cells, as explained above), Es is the direct irradiance 

from the Sun, and Fe is the solar-eclipse ‘view function’: 1 if sunlit, 0 if in eclipse. Notice that eclipse 

duration cannot be large except for very high orbits, of little practical interest except in the case of satellites 

orbiting a planet moon, in which case the moon eclipse by the planet may add to the eclipse by the moon. 

For instance, low Earth orbit eclipse cannot last more than 40 minutes, and geostationary eclipses no more 

than 70 minutes, but for a spacecraft orbiting the Moon, more than 200 minutes of eclipse of the Moon by 

the Earth may add to the 45 minutes of lunar eclipse. 

 

The eclipse period is usually the worst case for thermal control, and some heating is usually required to 

avoid the temperatures of sensitive instruments falling below their operational margins at the end of eclipse. 

High temperature gradients at the beginning and end of the eclipse period can be dangerous too, because of 

thermal expansion problems. 
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Planet own emission 

Planets and moons emit thermal radiation proportional to the fourth power of its absolute temperature, 

invisible to our eyes because at moderate temperatures (maximum surface temperature in a solar planet is 

735 K at Venus) practically all emitted radiation lies in the far infrared (i.e. >1 m). This planet-emission 

is an additional energy input to orbiting spacecraft, which can be either accounted solely as a ‘heat’ input 

by absorption of planet exitance, p,in b b b,p pQ A F M  (recall that body absorptance in the far-infrared band 

equals emissivity, b), or as (net) heat transfer, p,b b b b,p p b b,p bQ A F M A F M  , in terms of planet and 

spacecraft exitances in the far infrared, Mp=pTp
4 and Mb=bTb

4. The common practice in spacecraft 

thermal control is to take planet IR solely as an input ( p,inQ ), and include the spacecraft IR output to the 

planet in the output-to-background term, which is modelled also as a IR output and not as a heat exchange, 

in view of the low background temperature (T=2.7 K): 4

out b b bQ A T  . Hence, with the assumption of 

uniform planet temperature, planet IR input (usually called simply planet input, since the other planet 

contribution, albedo, is always treated apart), is constant along a circular orbit, and amounts to: 

 

  
4

p,in b b b,p p pQ A F T    (16) 

 

where b and Ab are the body surface absorptance in the infrared (equal to emissivity) and body area, Fb,p is 

the view factor from body surface to planet surface (to be found in View factor tabulations), and p and Tp 

are planet emissivity and surface temperature (to be found on Planets and moons property tabulations). 

Notice that the IR irradiance at an orbit altitude H, from an isothermal planet, decreases as the square of the 

radius, E(H)=Tp
4(Rp/(Rp+H))2. Notice that photovoltaic cells cannot convert IR radiation to electricity 

and thus planet input only has a heating effect. 

 

Effect of planet: albedo 

When not under eclipse, a satellite is always exposed to the reflected sunrays from the planet or moon (its 

albedo or ‘whiteness'), and maybe from nearby spacecraft parts. The maximum albedo contribution for a 

given spacecraft altitude would take place at the subsolar point (for orbits passing by) on a nadir-facing 

surface (Fig. 2a); other more intricate layouts as shown in Fig. 2b are treated afterwards. 

 

       
Fig. 2. Extreme cases in albedo contribution to low-orbiting spacecraft (SC): a) SC at subsolar point, 

b) SC near entering eclipse. 

 

First consider a cube-box satellite facing nadir in low orbit (say with altitude over planet radius H/R<0.1; 

H<600 km for LEO), at the subsolar point (Fig. 2a). Solar reflection at the planet surface is pEs, where p 

is the planet reflectance to solar radiation (albedo), and Es is the solar irradiance at subsolar point (Es=1360 

W/m2). In the limit of very low orbits, the reflected irradiance falling on the satellite nadir surface will be 

file:///C:/Isidoro_W/tc3/Radiation%20View%20factors.pdf
file:///C:/Isidoro_W/tc3/Planet%20and%20moon%20properties.pdf
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the same because it approaches a planar one-dimensional geometry (for Earth, with p=0.3, this albedo 

irradiance on a planar surface facing the subsolar point is Ea=pEs=0.3·1360=410 W/m2; the radiation 

absorbed by the nadir surface is bAbpEs, where b is the absorptance of the body-surface considered (in 

the solar band, to be found on Planets and moons property tabulations, but notice that for solar panels with 

photovoltaic cells of energy efficiency  covering an area fraction Fpq, the thermal absorptance is only 

bFpq), and Ab its area. For finite altitudes we must introduce the view factor, i.e. the fraction of frontal 

semi-space occupied by the planet (or fraction of radiation emitted by Ab that will impinge on the planet), 

Fb,p, which can be found in View factor tabulations and is Fb,p=(Rp/(Rp+H))2. The reflected solar energy 

absorbed by the nadir surface is thus: 

 

  em,in,alb,max a0 b b b,p p sW Q A F E    (17) 

 

where the symbol em,in,alb,maxW  has been used to point out that this energy input is not properly a heat 

exchange (it is an electromagnetic input that might be nearly fully converted to work), but the symbol 
a0Q  

(‘heat input’ from albedo at subsolar angle =0) is commonly used. It is worth plotting the variation of 

albedo irradiance with orbit altitude, as shown in Fig. 3, where it is compared with the irradiance on the 

same nadir-facing surface due to planet own emission, (16)). 

 

 
Fig. 3. Albedo irradiance (and planet IR emission emittance) on a planar surface facing the subsolar 

point, as a function of altitude for Earth orbits. 

 

We may deduce several general conclusions from Figs. 2 & 3: 

 Maximum albedo irradiance, and planet IR irradiance, quickly decrease with altitude, H, and their 

contribution to the energy balance of spacecraft parts is often negligible except for low orbits (say 

hH/R<3); e.g. the 410 W/m2 albedo irradiance at H0 drops to Ea=pEsFb,p=0.3·1360·0.06=24 

W/m2 for a mid-altitude Earth orbit of H=20 000 km as used for navigation satellites. 

 Albedo irradiance at high orbits is really smaller than as given by (17) because, contrary to own 

emission from a diffuse sphere (e.g. a blackbody), the reflected radiation from the incident 

collimated solar beam is not seen as a uniform bright but decays to zero at the planet limb (if the 

planet is assumed perfectly diffusive; in practice, most real objects, and planets and moons in 

particular, show different degrees of retro-reflecting effect, as shown in Fig. 4). 

 Contrary to what Fig. 3 might suggest, albedo input is usually smaller than planet-IR input on 

spacecraft thermal control, because the former rapidly decreases out of the subsolar position (it is 

zero during eclipse, see Fig. 2), while the latter remains practically the same all along the orbit. 

file:///C:/Isidoro_W/tc3/Planet%20and%20moon%20properties.pdf
file:///C:/Isidoro_W/tc3/Radiation%20View%20factors.pdf
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Besides, those maximum values are lowered by the respective absorptance of the surface involved 

(for albedo, in the solar band, ; for the planet emission, in the IR band, ).  

 

 
Fig. 4. a) Reflection of uniform parallel light on a perfect spherical diffuser (polished but Lambertian, not 

specular). b) Reflection on a real rough-surface sphere (with some retro-reflection at the rim). Not 

to be confused with own emission from an isothermal sphere, which would be seen (with a thermal 

camera for T<1000 K) nearly uniformly bright if Lambertian. c) Full moon reflectance (deep retro-

reflection). 

 

Properly computing the albedo view factor at any point in the orbit (i.e. for a non-zero phase angle) is a 

very hard task because of the bidirectional dependence (Sun direction and viewing direction) and the conical 

perspective (satellite close to the planet). That difficulty, together with the non-Lambertian behaviour of 

real surfaces, and the rapid changes in the field of view from the spacecraft, makes a simpler albedo model 

more convenient.  

 

For low orbits (say for altitudes less than 5% of planet radius, i.e. <320 km LEO), the flat-planet model 

may be good because only 2000 km of Earth's surface is under the field of view, and that patch may be 

assumed uniformly illuminated by the Sun. If the patch centre, the Earth's centre, and the Sun, form an 

angle , the patch will get a solar irradiance E0cos. Using the spherical law of cosines, cos=coscos, 

where  is the spacecraft angular position in its orbit, and  the orbit solar angle, as defined above; for an 

orbit passing by the sub-solar point, =0 and consequently =. The absorbed albedo radiation can be set 

as: 

   

 a a0 a a e e

1   if   - 2 2
, cos cos ,

0    otherwise
Q Q F F F F

  
 

  
    

 
 (18) 

 

where 
a0Q  is the absorbed albedo radiation corresponding to the subsolar point, given by (17), whether the 

satellite passes through that point or not. 

 

For high orbits, computing albedo input is more difficult because the satellite may see a wider surface area 

on the planet, differently illuminated by the Sun. The limit case would be for very high orbits (H), from 

which the lit part of the planet would be seen as a lune or crescent, i.e. the area between the planet limb and 

the terminator (the line separating the illuminated and dark parts, which is half an ellipse in orthogonal 

projection). If  is the phase angle (like for Moon phases seen from Earth, i.e. the angle between the planet-

to-Sun and planet-to-observer lines), it is easy to compute the crescent area as seen from afar, 

Acrescent=R2(1+cos)/2. Notice that from such a far distance the eclipse orbit fraction tends to zero (only 
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when the satellite and Sun are in opposition there is no albedo). But albedo input tends to zero at such high 

distances due to the view factor Fbp in (17) and are of no concern to thermal control. Albedo input at 

intermediate orbit-altitudes, i.e. not in the limit H0, can be estimated with the empirical fitting: 
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 (19) 

 

in substitution of (18), where, as above, the absorbed albedo radiation corresponding to the subsolar point, 

a0Q  is a0 b b b,p p sQ A F E   (or  a,th,0 b b b,p p spqQ F A F E   
 
for photovoltaic generators). Notice that (19) 

is only valid for satellite orbits with eclipse periods (i.e. for Te>0 in (13), which sets the limit in ), when 

es is well defined. Notice also that the restriction on maximum solar orbit-solar-angle, , given by (13) 

applies to both (18) and (19) models, which are compared in Fig. 5. In any case, the -bounds on (18) and 

(19) only apply to the first orbit, <<; to extend the computations to subsequent orbits, a floating-point 

remainder (modulo operation) must be used, i.e.  must be substituted by 2·floor((+)/(2))). 

 

       
Fig. 5. Albedo factor Fa function versus orbit angle , for a low orbit with h≡H/R=0.1 relative altitude. 

Comparison between the simple cosine model (18) and the extended model (19) for two orbit-

solar-angle values: =0 (the orbit cuts through the sub-solar direction, and eclipse starts at 

es=2.0 rad), and =60º=1.05 rad (eclipse starts at es=2.6 rad). 

 

Exercise 5. Consider a spherical black-body of 1 m in diameter, in an equatorial orbit at 300 km Earth 

altitude. Find: 

a) Orbital period and eclipse duration. 

b) Solar input along the orbit. 

c) Infrared input from the planet, assumed at a temperature of 288 K and with =0.6. 

d) Albedo input along the orbit, assuming an albedo of 0.3 and a simple albedo model. 

e) Periodic temperature evolution, assuming the body is isothermal, with a mass of 50 kg and a 

thermal capacity of 1000 J/(kg·K). 

Sol.: 

a) Orbital period and eclipse duration. 

An Equatorial orbit is in the Equatorial plane, which, for the Earth, is tilted 23.5º to the ecliptic 

plane. The subsolar point (i.e. the intersection of the Sun-planet direction with the sphere of the 

planet) is only at the Equator on equinoxes (20 March and 22 September), and then the eclipse last 
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the longest (although the seasonal variation is small for Equatorial orbits; the minimum eclipse time 

is at solstices, with Te=35.5 min instead of 36.5 min). For H=300 km and Earth radius R=6370 km, 

h≡(H+R)/R=1.047, and from orbit mechanics (13) with G=6.67310-11 N·m2/kg2 and Earth mass 

M=5.97·1024 kg, we get the orbit period, To=5420 s (90 min), and from (14) the eclipse duration 

Te=2190 s (36.5 min), eclipse start angle es=1.87 rad (107º), and eclipse end angle ee=4.41 rad 

(253º); see Fig. E5.1 

 

Fig. E5.1. Eclipse zone (in black) for a spherical satellite in a low Earth orbit passing through 

the subsolar point =0. 

 

b) Solar input along the orbit. 

The energy absorbed (or 'heat input') is constant on the sunlit sphere, and zero during eclipse. We 

must set up a step function to signal eclipses, but, in order for it to be valid for angles beyond 2 

(which are needed for multi-orbit simulation), we need a function to wrap up any orbit angle to the 

0..2 interval, which is accomplished with the function f()= mod 2 (i.e. the fractional part in the 

division /(2); see Fig. E5.2).  

 

Fig. E5.2. Eclipse function Fe (1 if sunlit, 0 if in eclipse) for two consecutive orbits ( in [rad]). 

 

Solar input (15) is then programmed as: 
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with 
0 b frontal ssQ A E =1·(D2/4)Es=1·(·12/4)·1360=1076 W; i.e. the 1 m in diameter spherical 

blackbody gets 1076 W directly from the Sun when lit, zero otherwise. 

 

c) Infrared input from the planet, assumed at a temperature of 288 K and with =0.6. 

If the planet is assumed isothermal, the infrared input is constant along the orbit,
4

p,in b b b,p p pQ A F T    (notice that the infrared emissivity of the object surface is used instead 
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of its absorptance in the IR, since they are equal). The view factor from body to planet, Fb,p (i.e. 

from a small sphere to a much larger sphere) is found in View factor tabulations to be: 

 

 
2

b,p

1
1 1

0.35
2

h
F

 

   

 

and thus 
4

p,in b b b,p p pQ A F T   =1·(12)·0.35·0.6·(5.67·10-8)·2884=259 W. 

 

d) Albedo input along the orbit, assuming an albedo of 0.3 and a simple albedo model. 

Maximum albedo input occurs at subsolar position and is (with albedo p=0.3): 

   

 a0 b b b,p p sQ A F E  =1·(12)·0.35·0.3·1360=454 W  

 

Albedo input at any point along the orbit is: 
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The albedo factor, Fa, has been plotted in Fig. E5.3 for two consecutive orbits.  

 

 
Fig. E5.3. Albedo function Fa (1 at the subsolar point, 0 if in eclipse) for two consecutive orbits 

( in [rad]). 

 

e) Periodic temperature evolution, assuming the body is isothermal, with a mass of 50 kg and a thermal 

capacity of 1000 J/(kg·K).  

The energy balance is s a pd d 0E t W Q Q Q Q Q       , since there is no mechanical or 

electrical work, there are three inputs (solar, albedo, and planet), and one output (to the 

background environment). Substitution of dE=mcdT and previous results yields: 
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where the last term, the own emission from the body of emissivity b, has a view factor of unity, 

Fb,=1, because the spherical surface is fully convex and only sees ‘background space’ (recall 

that only inputs from the Sun and the planet were accounted for, not net exchange). 

 

The above energy balance is a first-order ordinary differential equation in T(t) (or T(), since 

t/To=/(2)), which must be solved with some initial conditions (e.g. T(0)=300 K) until 

transients decay and a periodic solution remains. This can be done by Euler's method or better 

by some Runge-Kutta method. A numerical simulation with time discretization t=100 s has 

been run for N=5 orbits (until tend=NTo=5·5424=27120 s, starting with T(0)=300 K, and is 

presented in Fig. E5.4. 

 
Fig. E5.4. Temperature evolution of the isothermal sphere with time for 5 consecutive orbits 

(with T in [K] and t in [s]), from an arbitrary initial state at the subsolar point 

T(0)=300 K. 

 

We see in Fig. E5.4 that the 5th orbit (five have been simulated) is already periodic (notice that 

the initial and final T-values must coincide to be periodic), and we plot it alone in detail in Fig. 

E5.5 (minimum, mean, and maximum values are 268 K, 276 K, and 285 K). 

 
Fig. E5.5. Temperature evolution in the periodic state (the 5th orbit in Fig. E5.4 is plot, but in 

orbit angle units (T in [K] and  in [rad]), 

 

Notice in Fig. E5.5 the abrupt change in the slope of T(t) at entry and exit of eclipse, es=1.87 

rad and ee=4.41 rad. 
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A combination of albedo from Earth and from another body can be found in a solved exercise aside (in 

Spanish) where the external thermal loads on a balloon’s gondola are computed.  

Analytical one-node sinusoidal solution 

The basic goal of thermal analysis is finding the spatial temperature distribution (always discretized to a 

number of isothermal parts, the nodes; for the time being a single node, i.e. an isothermal body), and the 

temporal temperature evolution. This goal is achieved by solving the energy balance equation: 
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 (20) 

 

what has to be done numerically because of the non-linear terms in the energy inputs (the eclipse factor Fe, 

and the albedo factor Fa; except in the special case of Sun-synchronous orbits), and the non-linear term in 

the energy output (T4). But we have seen in previous examples that, for low altitude orbits, the input loads 

follow an up-and-down pattern: high gains when under sunshine, low gains under eclipse (just by planet 

emission), so that a cosine modulation over the average may be a suitable first approximation, i.e. we set 

Fe=Fa=(1+cos)/2. We have seen too, that temperature variations are not so great (a few tens of kelvin 

around 300 K or so), what suggest that Eq. (20) may be linearized in the temperature excursion, i.e. we set 

T(t)=Tm+T(t), which, after some transients, must develop a periodic solution that in the linear case is just 

a retarded cosine function (due to thermal inertia), i.e. in orbit angles (recall that t/To=/(2)): 

 

 T()=Tm+Tacos() (21) 

 

where the mean temperature value, Tm, the amplitude of the temperature oscillation, Ta, and the phase lag, 

, are obtained by substituting in Eq. (20), linearizing the T4-term, expanding the combined trigonometric 

functions, and cancelling the coefficients in cos, in sin, and the independent terms, i.e.: 
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 (22) 

 

with the independent terms yielding the mean temperature, Tm: 
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the sin-terms yielding the phase lag,  (notice the mc-dependence): 

 

http://imartinez.etsiae.upm.es/~isidoro/pr4/htm/c13/p691.html
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(mind that To is the orbit period), and the cos-terms yielding the temperature oscillation amplitude, Ta 

(proportional to solar and albedo fluctuations): 
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Of course, one cannot expect very accurate predictions from this linear one-node approximation, but it is a 

very helpful guide during preliminary attempts to spacecraft thermal control, where body geometry, orbit 

details, surface finishing and so on, may be unknown. 

 

Exercise 6. Consider a spherical black-body of 1 m in diameter, with a mass of 50 kg and a thermal capacity 

of 1000 J/(kg·K), )in an equatorial orbit at 300 km Earth altitude. A linear one-node model is to be 

used for preliminary thermal analysis. Find: 

a) The linear mean temperature along an orbit, and its comparison with the non-linear average. 

b) The amplitude of the linear temperature oscillations. 

c) The angle and time lag of the temperature response (relative to the subsolar point). 

d) A plot of the predicted temperature evolution. 

Sol.: 

a) The linear mean temperature along an orbit, and its comparison with the non-linear average. 

This is a simplification of Exercise 5, from which we borrow without development the 

following results: 

 Relative orbit radius, h≡(H+R)/R=1.047. 

 Orbit period, To=5429 s. 

 Eclipse duration, Te=2190 s. 

 Eclipse start angle (from subsolar point), es=1.87 rad. 

 Eclipse end angle (from subsolar point), es=4.41rad. 

 Solar input at subsolar point, 
0 b frontal ssQ A E =1·(D2/4)Es=1·(·12/4)·1360=1076 W. 

 Planet input (constant), 
4

p,in b b b,p p pQ A F T   =1·(12)·0.35·0.6·(5.67·10-8)·2884=259 W. 

 Albedo input at subsolar point, a0 b b b,p p sQ A F E  =1·(12)·0.35·0.3·1360=454 W. 

 Radiation emitted, 
4

b b b,Q A F T   =1·(12)·0.35·(5.67·10-8)·T4 (with T in [K] and Q
 in 

[W]). 

 Energy balance: 

   



 

Spacecraft thermal modelling and testing 28 

 
   

   

s0 e a0 a p

4 4

b frontal s e b b b,p p s a b b b,p p p b b b,

d

d

T
mc Q F Q F Q Q

t

A E F A F E F A F T A F T

 

         





    

   

  

 

Now the linearized solution is expected to be: 

 

 T()=Tm+Tacos() 

 

where the linearized mean temperature value, Tm, the amplitude of the temperature oscillation, Ta, 

and the phase lag, , are obtained by substituting T()=Tm+Tacos(), dT/dt=(2/To)dT/d, 

Fe()=(1+cos)/2, and Fa()=(1+cos)/2, in the above energy balance, linearizing the T4-term, 

expanding the combined trigonometric functions, and cancelling the coefficients in cos, in sin, 

and the independent terms, as developed above, with the results: 
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The sinusoidal solution, T()=275+10.8cos(1.32), in [K], is compared in Fig. E6.1 with the non-

linear solution from Exercise 5, and the sinusoidal input here assumed with the real input. 

 
Fig. E6.1. Temperature evolution in the periodic state (T in [K] and  in [rad]). Linear solution 

(in red) compared with non-linear one (green). 
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Fig. E6.2. Energy inputs along the orbit (Q in [W] and  in [rad]). Linear solution (in red) 

compared with non-linear one (green); during eclipse, from =1.78 to 4.41, the only 

input is 259 W from planet emission. 

Two nodes models 

In one-node models (i.e. isothermal bodies) there are only energy exchanges with the environment (Sun, 

planet, and background). The next step in refining the thermal analysis is a model with two nodes in the 

spacecraft, i.e. a spatial discretization of the body in two parts at different temperatures (e.g. the shell and 

the main equipment box, a main box and an appendage…). The advantage of this two-node model is that it 

allows to consider heat transfer between the parts (by conduction through the joints, and radiation when 

they see each other, since convection will be absent in the vacuum of space, or even in pressurised boxes 

under microgravity. 

 

The problem of finding the evolution of the two representative temperatures is solved by setting the energy 

balance for each part (1 and 2): 
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   

1
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
      


     
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 (26) 

 

where each of the old-known terms (maximum solar input 
s0Q , maximum albedo input 

a0Q , planetary input 

pQ , and output to the environment Q
) have the same formulation as above (only the numerical values 

change according to their respective data), and two new terms appear: the heat transfer by conduction from 

node 2 to node 1, cond,2,1Q , and the heat transfer by radiation from node 2 to node 1, rad,2,1Q . Notice that, 

instead of introducing in the second of (26) the heat transfer terms from 1 to 2, the negative of the 

corresponding terms from 2 to 1 have been used. The conductive and radiative heat exchange terms depend 

on temperatures, geometry and material properties, and are usually formulated as: 

 

  cond,2,1 2,1 2 1Q G T T   (27) 

  4 4

rad,2,1 2,1, 2 1Q R T T   (28) 

 

where G2,1 and R2,1 are known as the conductive and convective couplings between node 2 and node 1, 

which must be found by separately solving the specific thermal problem. The conductive coupling or 

thermal conductance, G, is often assumed to be a constant (dependent on material properties and geometry), 
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which may be computed by the electrical analogy method. The radiative coupling, R (sometimes including 

the constant ), may depend in general on the temperatures (not only on T1 and T2, but all others around), 

and must be computed by the exitance method, or by the Monte Carlo ray tracing method; however, in the 

case of blackbody surfaces this is also a constant, R2,1=A2F2,1, as explained in Heat transfer and thermal 

radiation modelling. 

 

In normal practice, instead of the symbols G and R, GL (linear gain) and GR (radiative gain) are often used.  

 

Exercise 7. Consider a circular-disc of radius R1=60 cm, thickness 1=5 mm, thermal capacity C1=500 J/K, 

painted white on the front and black on the rear. The disc acts as a sunshield to a concentric spherical body 

of radius R2=0.5 m, black-painted, which is at a distance H=1 m between centres, and has a thermal capacity 

C2=15 kJ/K. Both objects are joined by a tubular pole made of aluminium with 1 cm external diameter and 

0.3 mm wall thickness. The two objects are assumed to have high thermal conductivity and thus isothermal, 

constituting each one a node in the thermal problem. Find: 

a) The global thermal capacity of the pole, to justify the simplification to two nodes (disc 1, and sphere 

2). 

b) All the view factors for the nodes. 

c) The conductive and radiative couplings between nodes if all the surfaces are considered blackbodies. 

d) The energy balance for the permanently aligned configuration Sun-disc-sphere in space (without 

nearby planets or moons), with the assumption of blackbodies. 

e) The network equations in the real grey-body case. 

 

Sol.: The geometry is sketched in Fig. E7.1. 

 
Fig. E7.1. Circular-disc sunshield of radius R1 protecting from sunrays a concentric 

spherical body of radius R2<R1 at a distance H>R2 between centres. 

 

a) The global thermal capacity of the pole, to justify the simplification to two nodes (disc 1, and sphere 2). 

With typical aluminium properties, the global thermal capacity of the pole is 

C=mc=2RLc=2700·2··0.005·0.0003·0.5·900=11.5 J/K (the pole length is L=HR2=10.5=0.5 

m), much lower than the thermal capacities of the other two parts, so that, considering its small 

dimensions, it is not retained as a new node, and the sole influence in the thermal analysis is the 

conductive coupling between the two nodes considered. 

 

b) All the view factors for the nodes. 

From View factor tabulations, we get, with hH/R1=1/0.6=1.67 and r2R2/R1=0.5/0.6=0.83: 

 

file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/eSol.htm
file:///C:/Isidoro_W/tc3/Radiation%20View%20factors.pdf
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Notice that F12 is the fraction of energy emitted by one face of the disc (the face looking at the sphere, 

which we name ‘internal’) that is intersected by the sphere, i.e. really F1i,2; the rest goes to the 

background, F1i,=1F1i,2=0.80. For the ‘external’ face of the disc, F1e,=1, since nothing blocks its 

view (recall that the Sun, and in fact any celestial body (planets and moons), is not considered as a 

normal object with which heat is transferred, but only as an energy input. Concerning the sphere, the 

generic reciprocity relation A1F12=A2F21 allows to find 

F2,1i=R1
2F1i,2/(R2

2)=·0.62·0.20/(4··0.52)=0.072, and F2,=1F2,1i=0.93. 

 

c) The conductive and radiative couplings between nodes if all the surfaces are considered blackbodies. 

Thermal conduction between disc and sphere is through the aluminium pole cross-section of area 

A=2R=2··0.005·0.0003=9.4·10-6 m2. The heat transfer is: 

 

  
6

32 1
cond,2,1 2,1 2 1 2,1

200·9.4·10 W
3.8·10  

0.5 K

T T kA
Q G T T kA G

L L




        

 

where the pole length is L=HR2=10.5=0.5 m. 

 

The radiative couplings in the case of blackbodies coincide with the area times the view factor, i.e.,  

 

    4 4 4 4

rad,2,1 2,1 2 1 2 2,1 2 1Q R T T A F T T      

 

d) The energy balance for the permanently aligned configuration Sun-disc-sphere in space (without nearby 

planets or moons), with the assumption of blackbodies. 

Node 1, of thermal capacity C1 and temperature T1(t), gets a solar power s,1e 1e 1e sQ A E

=1··0.62·1360=1550 W (310 W with a white paint of a=0.2) at its ‘external’ surface, A1e. It also gets 

a power  cond,2,1 2,1 2 1Q G T T   by conduction through the pole, and a radiation power 

 4 4

rad,2,1 1i 1i,2 2 1Q A F T T   directly from node 2. But, apart from node 2 (the sphere), node 1 is 

exchanging a heat power  4 4

1i 1i, 1A F T T     with the background seen by the ‘internal’ surface 

(F1i,=0.80) and a heat power  4 4

1e 1e, 1A F T T     with the background seen by the ‘external’ surface 

(F1e,=1). The energy balance for node 1 is thence: 

 

        4 4 4 4 4 41
1 1e s 2,1 2 1 1i 1i,2 2 1 1i 1i, 1 1e 1e, 1

d

d

T
C A E G T T A F T T A F T T A F T T

t
               

 

For node 2 is entirely similar, with the simplification that it only has one continuous face (the sphere 

has uniform properties, contrary to the disc), so that the energy balance is: 
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where now there is no solar input, the heat conduction from node 1 is 

   cond,1,2 1,2 1 2 cond,2,1 2,1 2 1Q G T T Q G T T       , the heat radiation from node 1 is 

   4 4 4 4

rad,1,2 2 2,1 1 2 rad,2,1 1i 1i,2 2 1iQ A F T T Q A F T T        , and the heat radiation with the 

background is  4 4

2 2, 2A F T T    , with F2,=0.93. 

 

Substitution of numerical values (with T=2.7 K0) yields: 
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d
500 1550 3.8·10 12.8·10 51.3·10 64.1·10

d

T
T T T T T T

t

               
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d

T
T T T T T
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           

 

Numerical integration from an arbitrary initial state of T1(0)=T2(0)=300 K yields the results presented 

in Fig. E7.2. The final steady state can be found by solving the above equations with dT/dt=0, with 

the result T1()=332 K, T2()=172 K. 

 
Fig. E7.2. a) Temperature evolution of the disc (node 1, in red) and the sphere (node 2, 

in green), assumed blackbodies, from an arbitrary initial conditions 

T1(0)=T2(0)=300 K. B) Initial details. T in [K] and t in [s]. 

 

Notice in Fig. E7.2 the different transient times of the nodes, due to different thermal capacities; node 

1 has very low thermal inertia and equilibrates in a hundred of seconds, while node 2 takes several 

hours to equilibrate. In fact, node 2 is initially so hot that node 1 first stabilises to 336 K before finally 

reaching the 332 K in the long run. 

 

e) The network equations in the real grey-body case. 

Now, due to the difficulty in formulating the radiation heat transfer, instead of writing the energy balance 

equation as cond,i rad,id di i iC T t W Q Q   , it is better to set it as rad,i cond,id di i iQ C T t W Q   . Besides, 

one must choose one node at each ‘uniform’ surface in the radiative enclosure, so that we are forced to 

separate node 1 in node 1e and node 1i, each with half the total thermal capacity and conductively 

connected through a high enough conductance to make the difference in temperature negligible. The 

equations to solve are, at each node i (see The network method, in Heat transfer and thermal radiation 

modelling):  

 

file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
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which in our case of three nodes, and leaving out the rad,iQ –variables, become: 
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which is a system of 6 equations (6 equal sign) with 6 unknown (two at each node): M1e, M1e,bb, M1i, 

M1i,bb, M2, M2,bb, since temperatures are directly related to blackbody exitances by Mbb=T4. Notice how 

solar energy is treated separately from IR radiation, as dissipated power, 1i s,1e 1e sW A E . This system 

is most often interpreted and written according to an electrical analogy as shown in Fig. E7.3, where one 

sets 6 variable nets (one per ‘voltage’ M) plus an additional one for the ‘ground voltage’ M=T
40, 

with interconnecting radiative resistances according to the denominators in the equations above (notice 

there is no radiative coupling between the two sides of the disc), and local energy sinks corresponding 

to the right side of the equations above.  

 

Fig. E7.3. a) Initial electrical-analogy circuit, and a network simplification. 

 

The energy flow balance at each of the nets (M1e,M1e,bb,M1i,M1i,bb,M2,M2,bb) is, respectively: 
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The simplification of this initial electrical-analogy circuit shown in Fig. E7.3 reduces to system to 4 

equation with 4 unknowns (M1,bb,M1i,M2,M2,bb): 
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And we can extract the intermediate variables M2 and M1i from the last two equations and substitute 

in the other two, to leave a system of 2 equations with 2 unknowns (T1 and T2), which have to be 

solved numerically because of the non-linearity. The result is shown in Fig. E7.4. 

 
Fig. E7.4. a) Temperature evolution of the disc (node 1, in red) and the sphere (node 2, 

in green), from an arbitrary initial conditions T1(0)=T2(0)=300 K. B) Initial 

details. T in [K] and t in [s]. Real thermo-optical properties. 
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Analytical two-nodes sinusoidal solution 

As for one-node models developed above, we try to take advantage of the fact that, for low altitude orbits, 

the input thermal loads follow an up-and-down pattern (high gains when under sunshine, low gains under 

eclipse), so that a cosine modulation over the average may be a suitable first approximation. Moreover, as 

temperature variations along the orbit are not so great (a few tens of kelvin around 300 K or so), we may 

linearize the problem and get an analytical result. 

 

In the one-node case, the energy equation (with solar input, albedo input, planetary input, and IR output) 

was: 
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Now with two nodes we can introduce conductive and radiative couplings between them, to better model 

the real behaviour when the assumption of same temperature for the whole spacecraft is untenable, as in 

Exercise 7 above. We intend to make the same smoothing in the loads as before, i.e. setting the eclipse and 

albedo factors Fe=Fa=(1+cos)/2. Now the energy balance equation at each node is: 

 

 

   

   

1
1 1 s0,1 e,1 a0,1 a,1 p,1 cond2,1 rad2,1 1,

2
2 2 s0,2 e,2 a0,2 a,2 p,2 cond2,1 rad2,1 2,

d

d

d

d

T
m c Q F Q F Q Q Q Q

t

T
m c Q F Q F Q Q Q Q

t

 

 






      


     


 (30) 

 

and the answer we are looking for is: 
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When we expand all terms in (30) with this sinusoidal model, i.e.. with: 
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and we group in the independent-variable orthogonal functions, we get two equations of the form: 
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where the independent-term coefficients (C10 and C20), the cosine coefficients (C1c and C2c), and the sine 

coefficients (C1s and C2s), are dependent on the two-node geometry and material data, and on the 6 

unknowns we introduced in (31) (T1m,T1a,1,T2m,T2a,2), which are obtained by solving the 6 equations 

C10=C20=C1c=C2c=C1s=C2s=0. As for the one-node case, the orbit mean temperatures, T1m and T2m, could 

be obtained by solving (30) with the left-hand sides equal zero. The conclusions are similar to the one-node 

case: the time-lag in the response (1,2) is proportional to thermal capacity, and increases also with shorter 

orbit periods; besides, in the two-node case, the difference in time lag between nodes also increases with 

higher thermal resistances (conductive and radiative) between them. 

 

A more detailed analysis can be found in Pérez-Grande et al., Applied Thermal Engineering 29 (2009) 

2567–2573. 

Multi-node models 

Only the most crude spacecraft thermal discretization can be solved by hand, since each panel usually yields 

two nodes (one at each face), and models with more than a few nodes are cumbersome to deal with 

manually. 

 

Automated and semi-automated modelling tools are available to solve hundreds and thousands of nodes, 

but this is not a panacea: the burden of solving the node equations is transferred to the burden of dealing 

with myriads of numbers from which meaningful data are difficult to extract. Recourse is made to computer 

graphics to plot maps of temperatures and temperature strip-charts, but if the geometry is not simple, the 

visualization may be entangled. 

 

And one of the key problems when massive manual data entry is involved is how to guarantee the data 

input is free of typing mistakes.    

 

A key point to remember when actually doing the mathematical modelling of thermal problems is that it is 

nonsense to start demanding great accuracy in the solution when there is not such accuracy in the input 

parameters and constraints. Without specific experimental tests, there are big uncertainties even in materials 

properties, like thermal conductivity of metal alloys, entrance and blocking effects in convection, and 

particularly uncertainty in thermo-optical properties. 

Node selection 

The minimum number of nodes to achieve reasonable thermal accuracy should be established; debugging 

of input data, computing resources, and handling of output data, all grow with the number of nodes. 

 

The thermal problem must direct node selection. Geometrical data It is nonsense using many nodes just to 

have a smooth visualization; smoothing may be done afterwards by computer graphics on discrete 

computed data. 
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It is also nonsense using data with say 10% uncertainty in value (e.g. thermo-optical properties), and 

pretending five significant digits in node temperature.  

 

It is important to label nodes using short but meaningful names, and group nodes within component 

submodels. Table 1 gives an idea of how a tabulation of node descriptions may look like. 

 

Table 1. Example of node description matrix. 

Node # description label type Coordinatesa) Accep.T-range [K] P [W] b) mc [J/K] Tfix [K] 

999 deep space BGRN b.c. NA NA   2.7 

998 sun SUN b.c. NA NA   5800 

997 planet PL b.c. NA NA   298 

101 solar panel 1 SP1 ext. xyz=???, xyz=... 200..400  3 5000 ? 

201 ext. sat face 1 SF1 ext. xyz=???, xyz=... 200..400  1000 ? 

202 int. sat face 1 SF2 int. xyz=???, xyz=... 200..400   ? 

400 battery 1 BT1 int. xyz=???, xyz=... 270..330 10 10 000 ? 

...         
a) A centred body reference is used; for nodes with geometry or position varying with time, a time series 

must be specified. NA, not applicable. 
b)  P stands for dissipated power, not for electrical transmission; it is usual for nodes to have electrical 

dissipation varying with time, and thence a time series must be specified. 

 

Nodal equations 

The thermal energy balance for a generic node i in a N-node spacecraft discretization, may be written as 

CidTi/dt=Qij,input, where only heat inputs appear because electrical and electromagnetic dissipation are 

taken as heat inputs, and the electrical balance is analysed aside (as explained above under Solar cell effect). 

A more detailed thermal balance, where the different heat inputs and outputs are shown, and time is already 

discretized, takes the form: 
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where Ci is the overall thermal capacity of node i, Ti
+ and Ti are node i temperature after and before 

advancing a t in time (Euler discretization of time). Notice that, in many computer packages, two external 

nodes are added, the planet (or moon) and the background, and then there is no explicit infrared-input-from-

planet term, p,iQ , and node-own-emission term, ,iQ , because they are included in the summation for node 

radiation exchanges.  

 

The ‘heat input’ due to electrical dissipation within the node, ,disiQ  is a mission-operation data, although in 

the case of heaters and other active elements of STC can be under control of the thermal designer. 

 

The solar ‘heat input’, s,th,iQ  (really electromagnetic dissipation) is of the form: 
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where only thermal solar absorption must be accounted for (in the case of nodes with solar cells, this is total 

solar absorption, s, minus cell electrical efficiency, , times the packaging factor, Fpg), Es is solar 

irradiation normal to Sun direction, Afrontal the node projected area perpendicular to Sun rays (Afrontal=Acos 

for a planar patch tilted an angle ; its time dependence is fixed by orbital mechanics and spacecraft attitude 

control), and Fe an eclipse factor (equal to 1 if the node is sunlit, or 0 if at shadow; its time dependence is 

fixed by orbital mechanics). 

 

The albedo ‘heat input’, a,th,iQ  (really electromagnetic dissipation similar to solar input) takes the form: 

 

  a,th, s pg p s ,p a( ) ( )i i iQ F E A F t F t     (36) 

 

where p is planet albedo (i.e. solar reflectance), AiFi,p=ApFp,i is the part of the planet reflected power falling 

on Ai (the view factor Fi,p is tabulated for most simple geometries), and Fa is an albedo factor accounting 

for the planet phase seen from the spacecraft, equals 1 at the subsolar point, 0 at eclipse, and the following 

interpolation function for partially lit planet or moon (explained above under Albedo effect): 
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where  is the orbit solar angle. The planet ‘heat input’, p,iQ  (here not properly a heat-term because it is not 

the net energy exchange due to temperature difference) takes the form: 
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where i is the node absorptance in the IR band (equal to its emissivity), AiFi,p=ApFp,i is the part of the planet 

emitted power falling on Ai, p is planet emissivity, s the Stefan-Boltzmann constant, and Ti is the node 

temperature. 

 

The node ‘heat output’ to the environment, ,iQ (it is not properly heat because it is not the net energy 

exchange due to temperature difference, although it can be so considered if the background temperature, 

T=2.7 K, is neglected in comparison with node temperature, or really their fourth power), takes the form: 
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where Fi,  is the view factor from node i to the spacecraft environment including the background empty 

space, the planet or moon, and the solar disc, because only inputs from the latter were accounted for in the 

‘heat input’ terms.  

 

Heat transfer between spacecraft nodes, the conductive and radiative couplings, is treated below.  
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Node couplings 

The heat input (net value) to node i by conduction and possibly convection, con ,iQ  in (33), coming from the 

other nodes, can always be written as: 
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where Gij (often named GLij) is the conductance between nodes (or conduction coupling), which can be 

stated as an effective conductivity of the materials implied (kij,eff), times an effective heat-flow area (Aij,eff), 

divided by an effective distance between nodes (Lij,eff). The computation of the conductive couplings, Cij, 

must be done manually aside for most commercial thermal analysis packages, what means an additional 

burden for the data input. 

 

The heat input (net value) to node i by radiation, con ,iQ , coming from the other nodes, may be written as: 
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where Rij (often named GRij) is the radiative coupling, which coincides with the view factor times area in 

the case of all node surfaces being blackbodies, but which must be obtained by solving the node-exitances 

(radiosities) from the network model explained in The network method, in Heat transfer and thermal 

radiation modelling. 

 

A node matrix of N·N thermal couplings amongst the N nodes can be filled containing all the data, taking 

advantage of the symmetry in node interaction, Gij=Gji and Rij=Rji, and thermal capacities be included in 

the diagonal; e.g.: 

 Radiative couplings between node i and node j in the upper triangular side of the matrix. 

 Thermal capacities of each node i in the diagonal of the matrix. 

 Conductive couplings between node i and node j in the lower triangular side of the matrix. 

 

Table 2. Matrix of thermal couplings and thermal capacities. 

i \ j 1 2 3 4 … 

1 m1c1 R12 R13   

2 G21 m2c2    

3 G31     

4      

…      

 

Exercise 8. An 11-node model of a lunar satellite box (.doc). 

Numerical simulation 

Thermal analyses of large-scale spacecraft are currently performed with a variety of industry standard 

programs, which can be grouped in: 

file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
file:///C:/Isidoro_W/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
file:///C:/Isidoro_W/tc3/Lunar_sat_box.pdf
file:///C:/Isidoro_W/tc3/Lunar_sat_box.docx
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 Radiation exchange packages: ESARAD, TRASYS, THERMICA, SINDARadCAD... 

 Lumped finite-difference thermal balance packages: ESATAN, SINDA, … 

 Finite-element thermal balance packages: NASTRAN, COSMOS, ANSYS, FLOTHERM...  

 

ESATAN-TMS (ESA Thermal Analysis Network –Thermal Modelling Suite), developed by ITP Engines 

UK, formerly Aston Power, under ESA contract since the late 1970s, is the most used numerical simulation 

package in Europe. It is composed of the following components (further details can be found in 

http://www.itp-engines.co.uk/): 

 Workbench is an integrated environment with full pre- and post-processing capabilities, providing 

geometry modelling, visualisation, reporting, and analysis case control. 

 Thermal (ESATAN) is the nodal equation solver. 

 ThermNV is a tool for the visualisation of a thermal network including pre/post-processing of model 

data. 

 ThermXL is a spread-sheet add-in to Microsoft Excel for solving thermal analysis problems and is 

designed to fulfil the need for rapid turn-around of system level or simple "what-if" (parametric) 

type analyses. 

 Fluids (formerly FHTS) is an extension to ESATAN providing single and two-phase thermo-

hydraulic modelling of piped fluid networks. 

 Radiative (formerly ESARAD, coming from an early program VWHEAT) is dedicated to surface-

to-surface extended radiative calculation with support for specular and transparent surfaces. 

 Mission is dedicated to the analysis of orbiting and interplanetary bodies, with solar and planet 

heating. 

 

On the other hand, the combinations SINDA-TRASYS is the most used finite-differencing thermal and 

fluid network analyzer in the USA. The MSC Sinda family of thermal design products comprises: 

 MSC Sinda Analyzer is the finite-differences nodal equation solver. It originated in the 1960’s at 

Chrysler Aerospace as CINDA code, and was adapted by NASA in the 1970s. 

 MSC Sinda for Patran is a converter from MSC Sinda to Patran or MSC Nastran, for finite element 

analysis (FEA).  

 SindaRadCAD is dedicated to radiative couplings. 

 SindaFloCAD (or SINDA/FLUINT) is an extension for heat transfer design with fluid flow. 

 TRASYS (Thermal Radiation Analyzer SYStem, originally released as part of the NASA Cosmic 

collection), computes the total thermal radiation environment for a spacecraft in orbit. 

 

The THERMICA Suite (from EADS Astrium, since 1988) is composed of two main packages: 

 THERMICA, the pre- and post-processor to translate the geometrical model and its environment into 

a mathematical model by computing all thermal fluxes and couplings using a Monte-Carlo ray-

tracing technique for thermal radiation simulation. Also distributed as MSC THERMICA. 

 THERMISOL, the THERMICA solver based on ESATAN. But THERMICA is also compatible with 

MSC Sinda Analyzer. 
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EcosimPro, developed since 1989 by Empresarios Agrupados, under ESA contract, is a numerical simulator 

of generic dynamic system represented by differential-algebraic equations. THERMAL, a standard library 

supplied with EcosimPro, helps predicting temperature distributions and heat flows using the thermal 

network method. 

 

Finite differences method vs. Finite elements method 

An advantage of finite element methods is that the same program can be used for thermal analysis and for 

structural analysis. Heat transfer, particularly in radiation, is highly non-linear and thermal analysts tend to 

use as few thermal elements (nodes) as possible to reduce computing effort and cost. Similar restrictions 

do not apply to structural finite element program, and thus thermal and structural models will not be 

compatible for joint analysis with typical ratios of thermal to structural nodes of 1 to 20..50 being 

encountered. In practice this mismatch will burden the structural analyst, when asked to calculate thermal 

distortions, with the effort of interpolating temperatures in his structural model. On the other hand a thermal 

analyst may spend a disproportionate amount of time evaluating conductions for a model which only 

schematically matches a real structure. 

 

Stochastic modelling and spacecraft thermal analysis 

The thermal analysis of spacecraft in orbit is currently a computationally expensive task. Monte Carlo ray-

tracing is typically used to determine the parameters for the radiative heat transfer from the Sun and planet, 

and between different parts of the spacecraft. These parameters are then added to a mathematical model 

representing the conductive heat transfer, and iterative finite difference solvers are used to calculate 

temperatures within the spacecraft. Finding, for instance, the critical design cases (hottest, coldest, etc.) 

may involve running many parametric studies. In general, any optimisation process for the spacecraft 

design, or the correlation of the spacecraft model against test data, will require further parametric studies. 

Stochastic techniques involve applying probability functions to select values for these variables at random 

from a given range, and using statistical methods to determine the influence of the variable and the accuracy 

of the result. Software tools now exist to automate the process of selecting the values for the variables, and 

providing statistical feedback to the engineer to help arrive at the important analysis cases using fewer 

parametric runs than traditional methods. 

Analysis of results 

The analysis of the results may be quite different in the case of a closed analytical solution than for the case 

of a numerical solution. In the last case, the interpretation of the numerical solution to judge its validity, 

accuracy and sensitivity to input parameters can be quite involved. The direct solution usually gives just 

the set of values of the function at the nodes, what is difficult to grasp for humans in raw format (a huge 

list of numbers or, for regular meshes, a matrix). Some basic post-processing tools are needed for: 

 Visualization of the function by graphic display upon the geometry or at user-selected cuttings. 

Unfortunately many commercial routines, besides the obvious geometry overlay, only present 

the function values as a linear sequence of node values and don't allow the user to select cuts. 

Additional capabilities as contour mapping and pseudo-colour mapping are most welcome. 
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 Computation of function derivatives (and visualization). Sometimes only the function is 

computed, and the user is interested in some special derivatives of the function, as when heat 

fluxes are needed, besides temperatures. 

 Feedback on the meshing, refining it if there are large gradients, or large residues in the overall 

thermal balance. It is without saying that the user should do all the initial trials (what usually 

takes the largest share of the effort) with a coarse mesh, to shorten the feedback period. 

 Precision and sensitivity analysis by running some trivial cases (e.g. relaxing some boundary 

condition) and by running 'what-if' type of trials, changing some material property, boundary 

condition and even the geometry. Eventually, some the numerical simulation results must be 

validated against experimental tests. 

 

A global checking, showing that the detailed solution verifies the global energy equation, gives confidence 

in 'black box' outputs and serves to quantify the order of magnitude of the approximation. 

Spacecraft thermal testing 

Measurement is the ultimate validation of real behaviour of a physical system. But tests are expensive, not 

only on the financial budget but on time demanded and other precious resources as qualified personnel. As 

a trade-off, mathematical models are developed to provide multi-parametric behaviour, with the hope that, 

if a few predictions are checked against physical tests, the model is validated to be reliable to predict the 

many other situations not actually tested. 

 

Thermal tests can be performed at component, subsystem, or system level. Although tests should be carried 

out with maximum fidelity to expected operational procedures and realistic space environment (notably 

vacuum), sometimes, preliminary tests are performed at room pressure, like temperature cycling and 

operational sequences (e.g. turn-on and turn-off active components), but thermal vacuum tests are needed 

at the end. Main parameters of thermal cycling are temperature extremes, number of cycles, and rate of 

temperature change. Care must be paid to the thermal distortions caused by the ground-test-equipment used 

to support the flight components in the test facility. At the spacecraft level, thermal balance tests are 

performed to verify the thermal control system and global thermal analysis. 

 

Qualification tests are performed to validate all the steps in the design and manufacturing process, from 

requirements to testing techniques (tooling, handling procedures, personnel expertise...). Hardware for 

thermal qualification is subjected to more severe tests than flight hardware (i.e. to cold and hot thermal 

environments beyond those expected in flight), to demonstrate that a safety margin exists), although both 

are to be manufactured to the same standards. Flight hardware and spares are only subjected to milder 

acceptance tests. 

 

Final testing of a large spacecraft for acceptance as a delivered product is at the present limit of technology, 

since very large vacuum chambers, with a powerful collimated solar-like beam, and walls kept at cryogenic 

temperatures, must be provided (and the spacecraft able to be deployed, and rotated in all directions, while 

measuring).   
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Typical temperature discrepancy between the most advanced numerical simulation and the most expensive 

experimental tests may be some 2 K for most delicate components in integrated spacecraft (much lower 

when components are separately tested). 

 

Back to Spacecraft Thermal Control 
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