
 

Heat transfer and thermal radiation modelling page 1 

 

 

0BHEAT TRANSFER AND THERMAL RADIATION MODELLING 

 
HEAT TRANSFER AND THERMAL MODELLING ................................................................................ 2 

Thermal modelling approaches ................................................................................................................. 2 

Heat transfer modes and the heat equation ............................................................................................... 3 

MODELLING THERMAL CONDUCTION ............................................................................................... 5 

Thermal conductivities and other thermo-physical properties of materials .............................................. 5 

Thermal inertia and energy storage ....................................................................................................... 7 

Numerical discretization. Nodal elements ............................................................................................ 7 

Thermal conduction averaging .................................................................................................................. 9 

Multilayer plate ..................................................................................................................................... 9 

Non-uniform thickness ........................................................................................................................ 11 

Honeycomb panels .............................................................................................................................. 12 

MODELLING THERMAL RADIATION ................................................................................................. 13 

Radiation magnitudes .............................................................................................................................. 14 

Irradiance ............................................................................................................................................ 14 

Power .................................................................................................................................................. 14 

Exitance and emittance ....................................................................................................................... 15 

Intensity ............................................................................................................................................... 15 

Radiance .............................................................................................................................................. 15 

Blackbody radiation ................................................................................................................................ 17 

Real bodies: interface .............................................................................................................................. 20 

Emissivity............................................................................................................................................ 21 

Absorptance ........................................................................................................................................ 22 

Reflectance .......................................................................................................................................... 23 

Transmittance ...................................................................................................................................... 24 

Real bodies: bulk ..................................................................................................................................... 24 

Absorptance and transmittance ........................................................................................................... 24 

Scattering ............................................................................................................................................ 25 

Measuring thermal radiation ................................................................................................................... 25 

Infrared detectors ................................................................................................................................ 26 

Bolometers and micro-bolometers ...................................................................................................... 28 

Measuring thermo-optical properties .................................................................................................. 29 

IR windows ......................................................................................................................................... 30 

Spectral and directional modelling ......................................................................................................... 34 

Two-spectral-band model of opaque and diffuse surfaces (grey surfaces) ......................................... 34 

MODELLING RADIATION COUPLING ................................................................................................ 36 

Radiation from a small patch to another small patch. View factors ....................................................... 36 



 

Heat transfer and thermal radiation modelling page 2 

Radiative coupling .................................................................................................................................. 40 

Lumped network method (LNM) ........................................................................................................ 41 

Radiation distribution in simple geometries ........................................................................................... 44 

Radiation from a point source to a large plate .................................................................................... 44 

Radiation from a small patch to a large plate ...................................................................................... 45 

Radiation from a point source to a sphere, and how it is seen ............................................................ 47 

Radiation from a small patch to a sphere ............................................................................................ 49 

Radiation from a sphere to a small patch ............................................................................................ 50 

Radiation from a disc to a small patch ................................................................................................ 51 

Summary of radiation laws ..................................................................................................................... 51 

 
This is a briefing on thermal modelling of relevance to Spacecraft Thermal Control (STC). A more 

detailed analysis of Heat Transfer is presented aside. 

 

HEAT TRANSFER AND THERMAL MODELLING 

Thermal problems are mathematically stated as a set of restrictions that the sought solution must verify, 

some of them given explicitly as data in the statement, plus all the implicit assumed data and equations 

that constitute the expertise. It must be kept in mind that both, the implicit equations (algebraic, 

differential, or integral), and the explicit pertinent boundary conditions given in the statement, are 

subjected to uncertainties coming from the assumed geometry, assumed material properties, assumed 

external interactions, etc. In this respect, in modelling a physical problem, it is not true that numerical 

methods are just approximations to the exact differential equations; all models are approximations to real 

behaviour, and there is neither an exact model, nor an exact solution to a physical problem; one can just 

claim to be accurate enough to the envisaged purpose. 

 

A science is a set of concepts and their relations. Good notation makes concepts more clear, and helps in 

the developments. Unfortunately, standard heat transfer notation is not universally followed, not only on 

symbols but in naming too; e.g. for thermo-optical properties, three different choices can be found in the 

literature: 

A. Suffix -ivity/-ance may refer to intensive / extensive properties, as for resistivity / resistance. 

B. Suffix -ivity/-ance may refer to own / environment-dependent properties; e.g. emissivity (own) / 

absorptance (depends on oncoming radiation). This is the choice followed here (and in ECSS-E-ST-

31C-Thermal control). 

C. Suffix -ivity/-ance may refer to theoretical / practical values; e.g. emissivity of pure aluminium / 

emittance of a given aluminium sample. 

Thermal modelling approaches 

A model (from Latin modulus, measure) is a representation of reality that retains its salient features. The 

first task is to identify the system under study. Modelling usually implies approximating the real 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Control.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/index.htm
http://ecss.nl/standard/ecss-e-st-31c-thermal-control/
http://ecss.nl/standard/ecss-e-st-31c-thermal-control/
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geometry to an ideal geometry (assuming perfect planar, cylindrical or spherical surfaces, or a set of 

points, a given interpolation function, and its domain), approximating material properties (constant 

values, isotropic values, reference material values, extrapolated values), and approximating the heat 

transfer equations (neglecting some contributions, linearising some terms, assuming a continuum media, 

assuming a discretization, etc.).  

 

Modelling material properties introduces uncertainties because density, thermal conductivity, thermal 

capacity, emissivity, and so on, depend on the base materials, their impurity contents, bulk and surface 

treatments applied, actual temperatures, the effects of aging, etc. Most of the times, materials properties 

are modelled as uniform in space and constant in time for each material, but, the worthiness of this model 

and the right selection of the constant-property values, requires insight. 

Heat transfer modes and the heat equation 

Heat transfer is the relaxation process that tends to do away with temperature gradients in isolated 

systems (recall that within them T→0), but systems are often kept out of equilibrium by imposed 

boundary conditions. Heat transfer tends to change the local thermal state according to the energy 

balance, which for a closed system says that heat, Q (i.e. the flow of thermal energy from the 

surroundings into the system, driven by thermal non-equilibrium not related to work or the flow of 

matter), equals the increase in stored energy, E, minus the flow of work inwards, W; which, for the 

typical case of a perfect incompressible substance (PIS, i.e. constant thermal capacity, c, and density, ) 

without energy dissipation (‘non-dis’), it reduces to:  

 

 What is heat? (≡heat flow) Q≡EW=E+pdVWdis=HVdpWdis=mcT|PIS,non-dis (1) 

 

Notice that heat implies a flow, and thus 'heat flow' is a redundancy (the same as for work flow). Further 

notice that heat always refers to heat transfer through an impermeable frontier, i.e. the former equation is 

only valid for closed systems, and that heat transfer refers to a unique interface area (the whole frontier, 

or part of it under the continuum approach) but it cannot be associated to energy transfer by radiation 

between two bodies, 1 and 2 (unless all the heat flowing through frontier-1 also flows through frontier-2).  

 

The First Law applied to a regular interface (a non-dissipating one) implies that the heat loss by a system 

must pass integrally to another system, and the Second Law means that the hotter system gives off heat 

while the colder one takes it. In Thermodynamics, one refers sometimes to ‘heat in an isothermal 

process’, but this is a formal limit for small gradients and large periods. Here in Heat Transfer the interest 

is not in heat flow Q (named just heat, or heat quantity), but on heat-flow-rate Q =dQ/dt (named just heat 

rate, because the 'flow' characteristic is inherent to the concept of heat, contrary for instance to the 

concept of mass, to which two possible 'speeds' can be ascribed: mass rate of change, and mass flow rate). 

Heat rate, thence, is energy flow rate without work through an impermeable interface, or enthalpy flow 

rate at constant pressure without frictional work, i.e.: 
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 What is heat flux? (≡heat flow rate) 
PIS,non-dis

dQ dT
Q mc KA T

dt dt
     (2) 

 

where the global heat transfer coefficient K (associated to a transfer area A and to the average temperature 

jump T between the system and the surroundings), is defined by the former equation; the inverse of K is 

named global heat resistance coefficient M≡1/K. Notice that this is the recommended nomenclature under 

the International System of Quantities (ISQ), with G=KA being the global thermal transmittance and 

R=1/G the global thermal resistance, although U has been used a lot in the literature instead of K, and R 

instead of M. Sometimes, heat flux refers to heat flow rate per unit area, Q A . instead of to Q . 

 

Notice that heat (related to a path integral in Thermodynamics) has the positive sign when it enters the 

system, but heat flux, related to a control area, cannot be ascribed a definite sign until we select one side. 

 

In most heat-transfer problems, it is undesirable to ascribe a single average temperature to the system, and 

thus a local formulation must be used, defining the heat flow-rate density (or simply heat flux) as 

d dq Q A . According to the corresponding physical transport phenomena, heat flux can be related to the 

local temperature gradient or to the temperature difference between the system wall (Tw) and the 

environment (far from the wall, T, because at the wall local equilibrium implies T=Tw). In the classical 

three distinct modes of heat transfer, namely: conduction, convection, and radiation; the following models 

are used: 

 

 What is heat flux density (≈heat flux)?  

 
w

4 4

w

conduction

convection

radiation  

q k T

q K T q h T T

q T T





   


   


 

 (3) 

 

These three heat-flux models can also be viewed as: heat transfer within materials (conduction, Fourier’s 

law), heat transfer at fluid-bathed walls (convection, Newton’s law of cooling), and heat transfer through 

empty space (radiation, Stefan-Boltzmann’s law of cooling for a body in a large environment). An 

important point to notice is the non-linear temperature-dependence of radiation heat transfer, what forces 

the use of absolute values for temperature in any equation with radiation effects. Conduction and 

convection problems are usually linear in temperature (if k and h are temperature-independent), that is 

why it is common practice to work in degrees Celsius instead of absolute temperatures when thermal 

radiation is not considered. 

 

Thermal radiation is of paramount importance for heat transfer in spacecraft because the external vacuum 

makes conduction and convection to the environment non-existing, and it is analysed in detail below. For 

space applications, heat convection is only important within habitable modules, or in spacecraft 

incorporating heat-pipes or fluid-loops, for atmospheric flight during ascent or reentry, and for robots and 

habitats in the surface of Mars. The main difference with ground applications when concerning heat 

convection in space applications is the lack of natural convection under microgravity, although in all 

pressurised modules there is always a small forced air flow to help distribute oxygen and contaminants 

https://en.wikipedia.org/wiki/International_System_of_Quantities
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(important not only to people but for fire detection and gas control). A small convective coefficient of 

h=(1..2) W/(m2·K) is usually assumed for cabin air heating/cooling. Instead of the global convective 

coefficient, h, one might also use a local differential approach in the fluid side to compute heat convection 

at a wall, substituting  wq h T T   by 
f nq k T  , where kf is the thermal conductivity of the fluid an 

nT the normal gradient at the wall of the fluid-temperature field, and solving the fluiddynamic problem 

by CFD. 

 

Notice that, in the case of heat conduction, the continuum hypothesis has been introduced in (3), reducing 

the local formulation to a differential formulation to be solved in a continuum domain with appropriate 

boundary conditions (conductive to other media, convective to a fluid, or radiative to vacuum or other 

media), plus the initial conditions.  

MODELLING THERMAL CONDUCTION  

The famous heat equation (perhaps the most studied in theoretical physics) is the energy balance for heat 

conduction through an infinitesimal non-moving volume, which can be deduced from the energy balance 

applied to a system of finite volume, transforming the area-integral to the volume-integral with Gauss-

Ostrogradski theorem of vector calculus, and considering an infinitesimal volume, i.e.: 

 

 
0 2V

p V A V

dH T T
Q c dV q ndA dV c q k T

dt t t
     

            
     (4) 

 

where  has been introduced to account for a possible energy release rate per unit volume (e.g. by 

electrical dissipation, nuclear or chemical reactions), and constant conductivity is assumed for the last 

result, otherwise   2q k T k T k T         . For steady-state conduction through a plate, 

temperature varies linearly within the solid, and the conduction term in (3) can be written as 

 w1 w2q k T T L  , where L is the wall thickness.  

 

As said above, in typical heat transfer problems, convection and radiation are only boundary conditions to 

conduction in solids, and not field equations; when a heat-transfer problem requires solving field 

variables in a moving fluid, it is studied under Fluid Mechanics’ energy equation. In radiative problems 

like in spacecraft thermal control (STC), the local formulation is not usually pursued to differential 

elements but to small finite parts (lumps) which may be assumed to be at uniform temperature (the 

lumped network approach). 

Thermal conductivities and other thermo-physical properties of materials 

Generic thermo-physical properties of materials can be found in any Heat Transfer text (e.g. see 

Properties of solid materials), but several problems may arise, for instance: 

 The composite material wanted is not in the generic list. Special applications like STC usually 

demand special materials with specific treatments that may introduce significant variations from 

common data (e.g. there are different carbon-carbon composites with thermal conduction in the 

range 400..1200 W/(m·K)). 

http://imartinez.etsiae.upm.es/~isidoro/dat1/index.html
http://imartinez.etsiae.upm.es/~isidoro/dat1/eSol.pdf
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 The surface treatment does not coincide with those listed. Particularly concerning the thermo-optical 

properties, uncertainties in solar absorptance (and to a lesser extent in emissivity) may be typically 

±30 % in metals and ±10 % in non-metals, from generic data to actual surface state. 

 The working temperature is different to the reference temperature applicable to the standard data 

value, and all material properties vary with temperature. For instance, very pure aluminium may 

reach k=237 W/(m·K) at 288 K, decreases to k=220 W/(m·K) at 800 K; going down, it is k=50 

W/(m·K) at 100 K, increasing to a maximum of k=25∙103 W/(m·K) at 10 K and then decreasing 

towards zero proportionally to T, with k=4∙103 W/(m·K) at 1 K). Duralumin (4.4 %Cu, 1 %Mg, 0.75 

%Mn, 0.4 %Si) has k=174 W/(m·K), increasing to k=188 W/(m·K) at 500 K. 

 Thermal joint conductance between metals is heavily dependent on joint details difficult to 

characterise. And some joints are not fixed but rotating or sliding. 

 

However dark the problem of finding appropriate thermal data may appear, the truth is that accuracy 

should not be pursued locally but globally, and that there are always uncertainties in the geometry, the 

imposed loads, and other interactions, which render the isolated high precision quest useless and thus 

wasteful. 

 

Unless experimentally measured on a sample, thermal conductivities from generic materials may have 

uncertainties of some 10 %. Most metals in practice are really alloys, and thermal conductivities of alloys 

are usually much lower than those of their constituents, as shown in Table 1; it is good to keep in mind 

that conductivities for pure iron, mild steel, and stainless steel, are (80, 50, 15) W/(m·K), respectively. 

Besides, many common materials like graphite, wood, holed bricks, reinforced concrete, and modern 

composite materials, are highly anisotropic, with directional heat conductivities. And measuring k is not 

simple at all: in fluids, avoiding convection is difficult; in metals, minimising thermal-contact resistance 

is difficult; in insulators, minimising heat losses relative to the small heat flows implied is difficult; the 

most accurate procedures to find k are based on measuring thermal diffusivity a=k/(c) in transient 

experiments. 

 

Table 1. Thermal conductivities of some alloys and its elements. 

Alloy  k [W/(m·K)]  

of alloy 

k [W/(m·K)]  

of base element 

k [W/(m·K)]  

of other elements 

Mild steel G-10400 

(99 % Fe, 0.4 % C) 

51 (at 15 ºC) 

25 (at 800 ºC) 

80 (Fe) 2000 (C, diamond) 

2000 (C, graphite, parallel) 

6 (C, graphite, perpendicular) 

2 (C, graphite amorphous) 

Stainless steel S-30400 

(18..20 % Cr, 8..10 % Ni) 

16 (at 15 ºC) 

21 (at 500 ºC) 

80 (Fe) 66 (Cr) 

90 (Ni) 

 

Unless experimentally measured on the spot, solar absorptance, , and infrared emissivity, , of a given 

surface can have great uncertainties, which in the case of metallic surfaces may be double or half, due to 

minute changes in surface finishing and weathering. 
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Thermal inertia and energy storage 

A basic question on thermal control systems is to know how long the heating or cooling process takes (i.e. 

the thermal inertia of the system), usually with the intention to modify it, either to make the system more 

permeable to heat, more insulating, or more 'capacitive', to retard a periodic cooling/heating wave.  

 

When the heat flow can be imposed, the minimum time required is obtained from the energy balance, 

d / dH t Q , yielding t mc T Q   . 

 

When a temperature gradient is imposed, an order-of-magnitude analysis of the energy balance, 

d / dH t Q  → mcT/t=KAT, shows that the relaxation time is of the order t=mc/(KA), and, 

depending on the dominant heat-transfer mode in K, several extreme cases can be considered:  

 Conduction driven case. The time it takes for the body centre to reached a mid-temperature, 

representative of the forcing step imposed at the surface, is t=L2/a, i.e. increases with the square 

of the size, decreases with thermal diffusivity, and is independent of temperature. 

 Convection driven case. In this case, t=cL/h. 

 Radiation driven case. In this case, t=cL/h, with h being the net thermal radiation flux; if 

irradiance E is dominant (e.g. solar gain with E=1370 W/m2), then h=E; if exitance M is dominant 

and there are only losses to the deep-space background at T0=2.7 K (0), then h=T3; in the case 

of heat radiation exchange with a blackbody at T0, then h=(T2+T0
2)(T+T0). 

 

When thermal loads are transient, with short pulses, the best way to protect equipment from large 

temperature excursions is to increase the thermal inertia of the system, preferably by adding some phase 

change material like a salt or an organic compound (within a closed container with good conductive 

characteristics). 

 

Exercise 1. Find the time it takes for the centre of a 1 cm glass sphere to reach a representative 

temperature in a heating or cooling process. 

Sol.:  The time it takes for the centre to reach a representative temperature in a heating or cooling 

process (e.g. a mid-temperature between the initial and the final), is 

t=cL2/k=2500·800·(0.01/6)2/1=6 s, where the characteristic length of a spherical object, 

L=V/A=(D3/6)/(D2)=D/6, has been used. 

Numerical discretization. Nodal elements 

Numerical solutions are the rule in solving practical heat transfer problems because analytical formulation 

can only be found for very simple geometries and boundary conditions. Numerical methods transform the 

continuous problem into a discrete problem, thus, instead of yielding a continuous solution valid at every 

point in the system and every instant in time, and every value of the parameters, numerical methods only 

yield discrete solutions, valid only at discrete points in the system, at discrete time intervals, and for 

discrete values of the parameters. However gloom the numerical approach may sound, it has two crucial 

advantages: 

 Can provide a solution to any practical problem, however complicated it may be (not just steady 

one-dimensional, constant-property ideal models). In any case, it is most important to realise that 
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any practical problem is at the end an intermediate idealisation aiming at practical answers (e.g. 

nobody takes account of the infinite figures in ; 3 may be a good-enough approximation, and 

3.1416 already an accuracy illusion). 

 The discretization can be refined as much as wanted (of course, at the expense in computing time 

and memory, and operator's burden). In any case, it is wise to start with as few unknowns as 

feasible, for an efficient feedback (most of the first trials suffer from infancy problems that are 

independent on the finesse of the discretisation). Any practitioner knows that refinements should 

follow coarse work, and not the contrary.  

 

Most commercial packages are based on the finite element model (FEM). However, to gain insight in heat 

transfer, once the few analytical solutions are mastered, it is preferable to do numerical simulations in 

simple heat transfer problems, using the finite difference method (FDM), due to its simplicity (simple 1D 

or 2D transient problems only demand a few lines of code); the penalty is that FDM demands a simple 

geometry with a structured grid, i.e. FDM becomes complicated in systems with non-rectangular (or non-

cylindrical, or non-spherical) geometries. 

 

FDM starts by establishing a mesh of nodes in the domain, i.e. a set of points in space where the function 

(temperature) is to be computed. There should be a node where the function is sought; at least one node at 

each boundary or singularity (the most important locations, and were boundary conditions are imposed), 

plus a few others for better resolution (say between 10 and 50). Thermal conductivities between nodes are 

averaged as explained below, and thermal capacities are assigned to each node to solve the transients. 

Spatial gradients are best discretised by centred differences, and time discretization is simplest if using 

advance differences, namely: 

 

 
 

2

1 1 1 1

22

1

2
and

2

j j j j j

i i i i i

j j

i i

T T T T TdT d T

dx x dx x

T TdT

dt t

   



  
 

 






 (5) 

 

With this explicit scheme, the time step must be limited to avoid numerical instability. The stability 

criterion can be explained in terms of the Second Law of Thermodynamics: if we imagine the thermal 

relaxation of a node at T1 with the surroundings nodes at T0<T1 (2 in one-dimensional problems); the 

discretized heat equation can be written as tT/t=2axT/(x)2, but the Second Law forbids the temporal 

variation tT to surpass the spatial variation xT, i.e. tT <xT, implying 2at/(x)2<1 or Fo<1/2 (Fo<1/4 

for 2D, Fo<1/6 for 3D). 

 

An explicit scheme for 1D planar conduction, valid for walls, rods, bars, layers, and so on, with possible 

variation of properties and heat-path cross-section, and possible volumetric sources and lateral loses, is:   
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   

   
   

1
4 41 1

1 4 41 1

2 2

j j j j j j
j ji i i i i i

i i i i i i i i i i i i i i i

j j j j
j j j ji i i i

i i i i i i i i i i i i i i

i i i

A x c k A k A A x p x h T T T E
t x x

t
k A k A A p h T T T E

c A x x

     
    

   
     





 
     

  
     

  
           
   

  
               

(6) 

 

where space and time are discretized in constant steps (jt and ix, respectively), j

iT = T(jt,ix), i and 

ci are the density and thermal capacity at stage i, Ai the cross-section area, ki+ and ki- the thermal 

conductivity averaged to each side (i.e. ki+=(ki+1+ki)/2 and ki-=(ki1+ki)/2), i a volumetric hear source, pi 

the perimeter for lateral heat loses (e.g. p=D in a rod of diameter D; mind that a plate of width w may be 

exposed by both sides, p=2w, or just by one), hi the lateral convective coefficient towards a fluid at T∞, i 

the emissivity for infrared radiation, and Ei a possible irradiation gain [W/m2]. In the case of constant 

properties, (6) reduces to: 

  

      4 42 j

i i i i i i i

t p t
T T Fo T T T h T T T E

c cA


 

 



   

 
          
 

 (7) 

 

where Fo=kt/(cx2) is the Fourier number. It is convenient to place nodal points at the ends, i.e. to 

choose i=1 at x=0 and i=N+1 at x=Lx, in spite of the fact that then the end elements only extend x/2. As 

for the two boundary conditions, the case of constant end temperature is trivial, 1

1 1

j jT T  =constant 

and/or 1

1 1

j j

N NT T

  , but the case of adiabatic end,  0 2 2

j jQ kA T T x    =0, is more delicate (we cannot 

impose 1 1

1 2

j jT T   in an explicit scheme);  

  

       
1

0 20
0

1 1 2 1 1 2 1 22 2 1 2
2

FoQQt t
T T Fo T T A ph T T FoT Fo T T

cA x cA


 






  
            

 
 (8) 

 

i.e. with Fo1/2 and a small t, for adiabatic ends we can impose 1

1 2

j jT T  and/or 1

1

j j

N NT T

  . More 

involved boundary conditions, perhaps with prescribed heat flows, 
0 0Q  , can be worked out with (7). 

Thermal conduction averaging 

There are many multidimensional thermal conduction configurations which can be approximated by an 

equivalent one-dimensional model, greatly simplifying the analysis. The most common case is 

approximate a compound plate (e.g. a printed circuit board, PCB, made of copper lines to transmit power 

and data, and of electrically-insulating material, including the small electronic devices soldered to the 

PCB), to a uniform planar rectangular plate. Besides this multilayer-plate case, we present the thickness-

varying case, and the honeycomb case. 

Multilayer plate 

Consider a plate made of n layers (i=1..n), each one with thickness i and area-fraction coverage fi 

(interconnected, and with the remaining 1fi covered by non-conducting media), as sketched in Fig. 1a for 

a PCB; in this sketch there is a continuous bottom layer made of copper (used as heat sink), a thicker 

layer of electrical insulator made of fibre-reinforced epoxy (FR4), which constitutes the PCB structural 

element, a top layer partially covered with copper lines connecting the components, and a solder mask (a 
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thin polymer protecting the copper lines, since untreated copper oxidizes quickly) were openings for 

connections are made by photolithography. 

 

If the two ends along the plane (x-direction) are kept steady with a temperature difference Tx, the heat 

conducted is the sum of heat conducted through each layer, i.e.   x i i x xQ k A T L  , where ki and Ai 

are the thermal conductivity and cross-section area of the i-layer, which, if constituted by a main 

conducting material, can be substituted by its conductivity, ki, and the effective cross-section area, 

Ai=fiiLz, where fi is the average cross-section area occupied by the main conductor i is the i-layer 

thickness in the y-direction (i=y), and Lz the plate length in the third dimension. Hence, an effective 

thermal conductivity, keff, can be defined for approximating the real multilayer plate by a uniform plate: 

  

   layers

eff, eff,

layers y

   

i i i

x x
x x y z i i i z x

x x

k f
T T

Q k L k f L k
L L



 


 
   


  (9) 

 

On the other hand, if we want to average transversally instead of along the plate, the total heat flow is the 

combination in a series of layers, i.e. the compound wall solution:  

  

 
y

eff, eff,

layers layers

  
y x

y y x z y
i iy

i i x z i i

T T
Q k L L k

k f L L k f



 

 
   

 
 (10) 

 

As for thermal inertia, mc, the effective thermal capacity to be applied is ceff=mici/m.  

 

 
Fig. 1. a) Cross-section sketch of a PCB (about 1 mm thick). b) Example pictures of component-side and 

solder-side in a PCB.  

 

Exercise 2. Find the in-plane effective thermal conductivity, and the normal thermal resistance for a 

component covering a 37.537.5 mm2 area, in a PCB of 1501001.5 mm3, made of a single 

FR-4 layer, with a top copper layer of 70 m with 20 % of metal, and a bottom copper layer 

of 70 m with 100 % of metal. 

Sol.: PCB one-side area APCB=150100=15·10-3 m2; main-component area 

Acomp=37.537.5=1.4·10-3 m2. As copper only covers 20 % of the top layer (the other 80 % 

can be neglected for thermal conduction), applying (9) and (10) with kFR4=0.25 W/(m·K) 

across, kFR4=0.5 W/(m·K) along, and kCu=400 W/(m·K), we get: 

http://en.wikipedia.org/wiki/FR-4#Properties
http://en.wikipedia.org/wiki/FR-4#Properties
http://en.wikipedia.org/wiki/FR-4#Properties
http://imartinez.etsiae.upm.es/~isidoro/dat1/eSol.pdf
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 -along the card: 

  

 
 

Cu,1 Cu,1 Cu,1 FR4along FR4 FR4 Cu,2 Cu,2 Cu,2

eff,along

layers PCB PCB

3 3 3

3

400·0.2·0.07·10 0.5·1· 1.5 2·0.07 ·10 400·1·0.07·10 W
23

1.5·10 m·K

i i i
k f k f k fk f

k
  

 

  



 
  

  
 


 

  

  -normal to the card: 

 

  
     

3 3 3
comp

3 3 3
layerseff,n comp comp

0.07·10 1.36·10 0.07·10 K
3.9

W400·0.2· 1.4·10 0.25·1· 1.4·10 400·1· 15.410

i

i i

R
k A k f A

    

  
       

 

 The effective conductivity across the board under the component (assuming the same copper 

factor, is: 

 

  
3

eff, 3 3 3
Cu,1 Cu,2FR4

layers Cu,1 Cu,1 FR4 Cu,2

1.5·10 W
0.28

0.07·10 1.5·10 0.07·10 m·K

400·0.2 0.25 400

PCBz
yacross

i

i i

k

k f k f k k



  



  



   

   
 

 

Non-uniform thickness 

Consider a plate made of a single material but of non-uniform thickness (e.g. a plate ribbed or pocketed to 

strengthen it while minimising mass). To make the explanation simpler, let we think of a two-dimensional 

case with thickness profile varying only along the x-coordinate, (x); the equivalent thickness, e, of a 

uniform plate is found by imposing mass conservation: e=(x)dx/Lx. The equivalent thermal 

conductivity must be found from Fourier's law: 

  

  

   

eff, e eff,

e
0 0

d

d dd x x

x x x x
x x z z xL L

x

z

T T T L
Q k L k x L k k

x xL x

k x L x

 


 

 
    

 
 (11) 

 

Another way out is to find the effective thickness for the nominal thermal conductivity: 

  

  

   

eff eff

0 0

d

d dd x x

x x x x
x z z z L L

x

T T T L
Q k L k x L kL

x xL x

x x

  

 

 
    

 
 (12) 

 

Exercise 3. Find the effective thermal conductivity and the effective thickness of the ribbed aluminium 

(A-7075) plate sketched in Fig. E3, machined from a 5005005 mm3 uniform plate, with six 

equi-spaced parallel grooves 60 mm wide and 3 mm deep were milled, leaving 7 equi-spaced 

ribs 20 mm wide. 
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Fig. E3. Cross-section of the ribbed plate. 

 

Sol.: From mass conservation, the averaged thickness is mean=(x)dx/Lx=2.84 mm (closer to the 

minimum thickness of 2 mm, than to the maximum of 5 mm, since the 2 mm spans are wider 

than the 5 mm ones). The effective thermal conductivity for that mean thickness is obtained 

from (11) with k=134 W/(m·K) for A-7075: 

  

 

 
 eff 3

mean
0

0.5 W
134 113 

d m K2.84·10 ·208x

x

L

L
k k

x

x





  




 

  

 i.e. the effective thermal conductivity to be used in the equivalent uniform-thickness plate is 

15 % lower than the nominal one. Conversely, if we want to find the effective thickness to be 

used with the nominal k=134 W/(m·K) for A-7075, we use (12) and get: 

  

 

 

eff

0

0.5
2.40 mm

d 208x

x

L

L

x

x





  


 

 

 The heat transfer along the plate can be computed from 

eff mean effx z x z xQ kA T L k L T L k L T L       , where 
eff mean effk k   (113·2.84= 

134·2.40). 

 

Honeycomb panels 

Honeycomb panels (Fig. 2) are sandwich-type structural elements formed by thin high-strength outer 

layers (faces, made of CFRP, GFRP or aluminium), bonded to a low-density thicker inner layer (core), in 

this case in a hexagonal pattern like a beehive that gives its name. They are widely used in aerospace 

vehicles due to their great stiffness-to-mass ratio. Heat transfer through honeycomb panels is non-

isotropic and difficult to predict. If the effect of the cover faces is taken aside, and convection and 

radiation within the honeycomb cells can be neglected in comparison with conduction along the ribbons 

(what is the actual case in aluminium-honeycombs), heat transfer across each of the dimensions is: 

 

 

3
with

2

with

8
with

3

x
x x x x

x

y

y y y y

y

z
z z z z

z

T
Q kF A F

L s

T
Q kF A F

L s

T
Q kF A F

L s








  


 

  


 


 (13) 

 

http://imartinez.etsiae.upm.es/~isidoro/dat1/eSol.pdf
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where F is the factor modifying solid body conduction (the effective conductive area divided by the plate 

cross-section area), which is proportional to ribbon thickness, , divided by cell size, s (distance between 

opposite sides in the hexagonal cell, not hexagon side, a, in Fig. 2; 3s a ), and depends on the 

direction considered: x is along the ribbons (which are glued side by side), y is perpendicular to the sides, 

and z is perpendicular to the panel. For instance, for the rectangular unit cell pointed out in Fig. 2, of 

cross-section area 3as, the solid area is 8a, and the quotient is Fz=(8/3)/s. 

 

 
Fig. 2. Structure of a honeycomb sandwich panel: assembled view (A), and exploded view (with the two 

face sheets B, and the honeycomb core C) (Wiki). Ribbons run along the x direction, and are glued 

side by side in counter-phase along the y direction as detailed. 

 

Mean density scales with Fz (e.g. for a core made of aluminium foil (=2700 kg/m3, k=150 W/(m·K)) of 

thickness =30 m in s=3 mm cell pattern, Fz=(8/3)(/s)=(8/3)(0.03/3)=0.027, and the mean core-panel 

values are =2700·0.027=73 kg/m3, and k=150·0.027=4 W/(m·K). 

 

Example 1. Satellite platform with embedded battery modules. 

Example 2. Thermal transients in a CFRP wall. 

Example 3. Printed circuit board with two large integrated circuits 

Example 4. Printed circuit board with central dissipation. 

Example 5. Kapton heater between plates 

MODELLING THERMAL RADIATION  

Thermal radiation is the electromagnetic radiation emitted by bodies because of its temperature, i.e. not 

due to radio-nuclear disintegration (like  rays), not by stimulation with another radiation (like lasers, 

fluorescent lamps, or X-rays produced with an electron beam), not by electromagnetic resonance in 

macroscopic conductors (like radio waves). Although radiation with the same properties as thermal 

radiation can be produced by non-thermal methods (e.g. ultraviolet radiation produced by an electron 

beam in a rarefied gas, visible radiation produced by chemical luminescence), proper thermal radiation is 

emitted as a result of the thermal motions at microscopic level in atoms and molecules in macroscopic 

thermal equilibrium, being almost proportional to the four power of its absolute temperature. 

 

Maxwell’s equations of electromagnetism might be used to build a theoretical description of the 

interaction of electromagnetic radiation with matter, but it is so complicated and uncertain for real bodies 

(precise knowledge of material data like electrical conductivity, permittivity, and permeability, would be 

needed), that one has to resort to empirical data in most instances. The theoretical model then is based on 

http://en.wikipedia.org/wiki/Honeycomb_structure#Manufacture
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise3.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise4.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise6.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise5.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise7.pdf
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Planck’s law, with empirical thermooptical values to fit real behaviour of materials. Even so, uncertainty 

in surface finishing at microscopic level (<10-6 m) cannot be avoided in practice, what compromises the 

accuracy in extrapolating the data. Nevertheless, radiative heat transfer in the extreme near field (<10-6 m) 

cannot be modelled with Planck’s law and requires fluctuational electrodynamics with Maxwell’s 

equations (Nature, DOI: 10.1038/nature16070). 

 

We mainly consider thermal radiation exchanges in vacuum (except when planet atmospheres are 

considered). 

Radiation magnitudes 

A propagating radiation has several characteristics (e.g. it propagates in straight line under vacuum and 

isotropic media), amongst which, a measure of its amount is most important. The basic measure of 

radiation ‘intensity’ is irradiance, but several other magnitudes are of interest to characterise radiation 

‘intensity’, each of them showing certain advantages. 

Irradiance 

Irradiance, E [W/m2], is defined as the radiant energy flowing per unit time and unit surface (normal to 

the propagation direction, if not otherwise stated). Irradiance is also the radiation power, , impinging on 

a unitary surface directly from a source or through intermediate reflections, E≡d/dA. Irradiance is 

measured by the effects of the incoming radiation (focused or not) on a detector (thermal effects, or 

quantum effects). 

 

For one-directional radiation (like sunlight), irradiance depends on surface inclination in the way 

E=E0cos; e.g. extra-terrestrial solar irradiation at an astronomic unit (1 au, often written 1 AU), 

E0=1370 W/m2, so that a Sun-facing plate gets that power density, but a 45º tilted plate gets 

1370 2 969  W/m2. Notice that, in general, only a fraction of the irradiance on a surface is absorbed 

(the absorptance, Eabs/E), the rest being reflected (and, for semi-transparent materials, another fraction 

is transmitted, the transmittance, Etra/E).  

Power 

For a given source, the radiation power,  [W], is the total power emitted, which can be measured by the 

energy balance of the source when all other inputs and outputs are known (e.g. within a cryogenic 

vacuum cavity, to avoid any heat transfer). For other configurations, radiation power is measured in terms 

of irradiance.  

 

For a point source in non-absorbing media, radiation is isotropic, with irradiance falling with distance 

from the source such that =4R2E, known as the inverse square law. For instance, if we know that at the 

Sun-Earth distance (RS-E=1 AU) solar irradiance is E0=1370 W/m2, solar irradiance at Mars (RS-M=1.5 

AU, though Mars-orbit is more elliptic than the Earth’s) would be E=E0(RS-E/RS-M)2=1370·(1/1.5)2=610 

W/m2. Notice, however, that irradiance from an infinite planar source does not depend on the distance, 

and that for an infinite line source, irradiance falls with distance (not distance squared). 
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Exitance and emittance 

For a given distributed source, the total power per unit surface issuing from that surface is termed 

exitance, M [W/m2] (formerly called radiosity and denoted by J). For blackbodies, M=T4, but in a more 

general case (termed grey bodies), exitance accounts for three different effects: the own emission by 

being hot, T4=Mbb, the part reflected from irradiance falling on it, E, and the part coming by 

transmission from the back Erear, although the latter is absent in opaque objects, and exitances 

M=Mbb+E+Erear is thence: 

 

 M=Mbb+E (14) 

 

For a given distributed source, the emittance, M [W/m2], is the power emitted per unit surface area 

without accounting for other body inputs, i.e. thermal-radiation emittance is M=T4=Mbb (known as 

Stefan’s law, with =1 in the ideal case of a blackbody). Hence, emittance is that part of exitance not 

including reflections from incoming radiation (neither transmission from rear-coming radiation). It is 

ambiguous to use the same symbol M for the whole emerging flux (exitance) and for the part due to own 

emission (emittance), but so it is the present standard radiometric notation. 

 

For a convex surface source, dM A    (e.g. for a uniform spherical source of radius R0, M=/(4R0
2), 

but concave sources emit less power than this area integral because part of it do not escape but feed back 

the source.  

 

It is difficult to separate the emitted and reflected contribution when measuring exitances; one has to 

measure with and without shrouds to shield reflections. Close enough to an emitting surface protected 

from reflections, source emittance equals irradiance on a detector, but, as said above, irradiance decrease 

with distance in non-planar configurations (with the inverse square law in spherical propagation). For 

irradiance to be greater than emittance, a converging radiation is needed (i.e. concentration from concave 

radiators). For instance, a detector close to the Sun surface will get E=M=TS
4=5.67·10-8·57804=63·106 

W/m2, decreasing with distance from Sun-centre to probe, RSp, as E=M(RS/RSp)
2, so that at 1 AU 

E=M(RS/RSp)
2=63·106·(0.7·109)/(150·109))2=1370 W/m2.  

Intensity 

For a given point source, the power radiated in a given direction, the intensity Id/d [W/sr], is 

important when the source is non-isotropic, since for non-absorbing media, intensity is conservative with 

the distance travelled (really, the invariant is intensity divided by the index of refraction squared). For a 

point source I=/(4). Radiant ‘intensity’ per unit area, radiance, is much more used than intensity.  

Radiance 

For extended surfaces (i.e. those that subtend a finite solid angle from the viewer, radiance, L [W/(m2·sr)], 

is defined as the energy emerging or impinging on the surface by unit normal area in the viewing 

direction, unit solid angle, and unit time. Notice that radiance (L) is always measured perpendicular to the 

viewing direction, and it can be used either for exiting or incoming radiation, whereas exitances and 

emittance (M) are used only for outgoing radiation, and irradiance (E) is used only for incident radiation; 

see Fig. 3. 
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Fig. 3.  Different radiation ‘intensity’ magnitudes. The radiometric and corresponding photometric units 

are: power [W] or [lm], intensity I [W/sr] or [lm/sr]=[cd], radiance L [W/(m2·sr] or luminance 

[lm/(m2·sr]=[cd/m2], exitance (or emittance) M [W/m2] or [lm/m2]=[lx], and irradiance E [W/m2] 

or illuminance [lm/m2]=[lx]. 

 

Radiance, L≡d2/(dAd) [W/(m2·sr)], is a useful magnitude because it indicates how much of the power 

issuing from an emitting or reflecting surface will be received by an optical system looking at the surface 

from some angle of view (the solid angle subtended by the optical system's entrance pupil, like in our 

eye). The importance of this radiance is also based on its following properties: 

 Radiance is isotropic (independent of viewing direction) for perfectly-diffuse surfaces, i.e. for 

those obeying the cosine dependence of intensity for a fixed un-projected area, like the directional 

dependence of a flux of photons emanating from a hole in a cavity. If we compare the radiant 

power exchanged between two surface patches of area dA1 and dA2 (or dA1 and dA2, when 

projected along the centres line), in equilibrium with the isotropic radiation, the radiant power 

reaching dA2 from dA1 must be equal to the radiant power reaching dA1 from dA2: 
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 

 (15) 

 

 and, since they are at equilibrium, we arrive at the radiance isotropy, L(1)=L(2) for any . This 

means that for an ideal radiator (the blackbody introduced below), and with more or less 

approximation for many practical radiators (in the limit of perfect diffusers), the power radiated in 

a given direction per unit radiating area projected along the view path is L for any direction (it 

would be Lcosif the area were not projected,  being the zenith angle of the direction 

considered. Any surface that radiates (by own emission or by reflection from other sources) with a 

directional intensity following this cosine law is named ‘perfect diffuser’ or Lambertian surface, in 

honour of J.H. Lambert’s 1760 “Photometria”. A radiation detector pointing to a Lambertian 

planar surface detects the same irradiance when pointing at any position because the projected 

area at a given distance is constant (only depends on the aperture of the detector); it sees uniform 

radiance because, although the emitted power from a given area element is reduced by the cosine 

of the emission angle, the size of the observed area is increased by a corresponding amount. 



 

Heat transfer and thermal radiation modelling page 17 

 Radiance is simply related to exitances in a Lambertian surface by L=M/, as deduced from its 

definition, L≡d2/(dAd), and dM A   : 

 

     
22

0 0

d d d cos d cos 2 sin dproj

A A

M A L A M L L L





                   (16) 

 

 Radiance is conserved in non-dissipative optical systems (really, radiance divided by the index of 

refraction squared is invariant in geometric optics), as dictated by an energy balance, i.e. radiance 

at the source is the same that at the detector (e.g. if one takes a picture of the Sun disc, the light-

intensity received by any illuminated pixel on the detector will be the same, independently of the 

distance to the Sun). 

 

Radiance of a non-uniform source, like a half moon reflexion, depends on the viewing point (direction 

and distance), whereas radiance of a uniform source like the Sun, does not depend on direction or 

distance. Looking from the Sun to the Earth, a small patch of 1 m2 at the Sun surface emits 

L=M/=TS
4/=63·106 W/m2/=20·106 W/(m2·sr), i.e. 20·106 W per unit solid angle towards its frontal 

direction (in other directions, this patch emits with the cosine law; e.g. zero in the tangential direction). At 

the mean Sun-Earth distance, RSE=150·109 m, a 1 m2 frontal patch subtends a solid angle from the Sun of 

=(1 m2)/RSE
2=1/(150·109)2=44·10-24 sr (the whole Earth subtends =RE

2/RSE
2=5.7·10-9 sr from the 

Sun, or 2RE/RSE=85·10-6 rad, and the Sun from the Earth =RS
2/RSE

2=68·10-6 sr, or 2RS/RSE=0.01 rad), 

so that the 1 m2 frontal patch at the Earth gets L=20·106·44·10-24=0.9·10-15 W from the 1 m2 frontal 

patch at the Sun. If we add up the contribution from the whole solar disc, we get LRS
2= 

20·106·44·10-24(0.7·109)2=1370 W/m2 for the irradiation on a 1 m2 facing panel at the Earth (outside the 

atmosphere). 

Blackbody radiation 

Considering an evacuated material enclosure (of any material property, but non-interacting with the 

environment, i.e. opaque) at thermodynamic equilibrium (i.e. isothermal), and the EM radiation field 

created inside by the thermal vibrations of atoms at the walls, thermodynamic equilibrium between matter 

and radiation dictates that this radiation (named blackbody radiation by Gustav Kirchhoff in 1860) must 

have the following properties: 

1. Temperature. One may ascribe a temperature to the radiation, the temperature of the enclosure. 

2. Isotropy. The radiation must be isotropic (i.e. a detector cannot discern any privileged direction). 

3. Photon gas. By quantum physics, energy is quantized, E=h=hc/ (h=6.6·10-34 J·s) and the EM 

waves can be viewed as EM particles, called photons. One often refers to the photon gas as an 

ideal gas (i.e. a set of non-interacting particles, each with an energy E=h); the main distinction 

between the photon gas and the traditional ideal gas being that photons are not conservative and 

that they all move at the speed of light, c, but with different wavelengths, whereas particles in a 

classical gas are conservative and have the Maxwell-Boltzmann distribution law for speeds. 

4. Spectrum. In similarity with the fact that maximum entropy yields the Maxwell-Bolzmann 

distribution of molecular speeds in classical gases, maximum entropy yields the Planck 
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distribution of photon wavelengths or frequencies for blackbody radiation. Planck’s law in terms 

of spectral energy density [(J/m3)/m] is:  
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The number of photons per unit volume with energy E=h=hc/ between  and +d is u/E. 

Although the wavelength-range extends in principle to the whole domain, 0<<, Planck’s 

distribution is very peaked, particularly at lower wavelengths, and 93 % of the whole energy lies 

in the range 0.5</Mmax<4, where Mmax=C/T and C=2.9.10-3 m·K. Human eye can only see in 

the range, 0.4<m<0.7 (the so called visible range, which can be subdivided in six 0.5 m 

amplitude colour bands corresponding to violet, blue, green, yellow, orange, and red, in increasing 

order. 

5. Emission. When this radiation escapes through a small hole in the enclosure (small holes appear 

black to the eye because they do not reflect any illuminating light), Planck’s law in terms of 

spectral exitance [(W/m2)/m] is: 
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where L is the spectral radiance [(W/m2)/sr], and c1=3.74·10-16 W·m2, c2=0.0144 m·K. Recall: 

h=6.626·10-34 J·s, k=1.38·10-23 J/K. Notice that exitance and emittance are referred to real surface 

area, whereas radiance is referred to the projection of the emitting area in that direction; thence, an 

infinitesimal emitter of area dA emits with a cosine law (projected area) but is seen with a constant 

radiance at all 2 steradians, with, cos cos 2 sinM L d L d L             . Further 

notice that it is wrong to substitute there =c/; the correct relation is dL=Ld=Ld:, i.e.: 
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  (19) 

 

Planck’s law corollaries: 

 Wien's displacement law: Mmax=C/T, with C=2.8978·10-3 m·K=hc/(kx), where x is the root of 

x=5(1ex) (=4.965). Notice again the rapid spread of Planck’s distribution with representative 

wavelength: at the peak, T=C, the spectral emission falls with the fifth power of Mmax. 

 Stefan-Boltzmann’s law: M=Md=T4, proposed by Jozef Stefan in 1879 and deduced by his 

student Ludwig Boltzmann in 1884, with =25k4/(15c2h3)=5.67·10-8 W/(m2·K4) being the 

Stefan-Boltzmann constant. Stefan used this law to find for the first time the temperature of the 

Sun. 

 

Planck’s law approximations: 
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 In the limit of short wavelengths, it reduces to Wien’s law: 1

5 2exp

c
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. 

 In the limit of long wavelengths, it reduces to Rayleigh-Jeans law: 
4

2 ckT
M




 . 

Why exponent 4 in blackbody radiation? 

Using the kinetic theory of an ideal gas composed of particles with momentum p  (of modulus |p|; not to 

be confused with p for pressure): 

 Kinetic theory teaches that pressure (p) on a surface is twice the momentum (2|p|), times the speed 

(c), times the number of collisions per unit area and time (n/6, n=N/V being the number of 

particles per unit volume, and 1/6 the fraction moving towards our surface); i.e. p=(1/3)nc|p|. 

 Wave-particle duality teaches that, for a photon, E=h=|p|=c|p|. In relativistic mechanics, in 

order to be conserved, momentum must be defined as 
0p m v , and kinetic energy is 

E2=|p|2c2+m2c4, or for a zero-rest-mass particle, E=|p|c=c|p|.  

 Consequently, radiation pressure is p=(1/3)nc|p|=(1/3)nE=(1/3)u, u=U/V being the internal energy 

per unit volume. Notice the difference between p=(1/3)U/V for a photon gas, and p=(1)U/V for 

a perfect gas (U=ncvT+const=nRT/(1)+const=pV/(1)+const). It follows that photons=4/3=1.33. 

 Hence, pressure in a photon gas only depends on temperature (not in V or N; it would be 100 kPa 

at 107 000 K), whereas in an ideal gas pressure depends on T and V (or N). 

 But Thermodynamics teaches that dU=TdSpdV, so that dividing by dV and fixing T, and with 

Maxwell relation from dA=SdTpdV: 
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 To compare the photon gas with the ideal gas, the equation above can be rewritten as: 
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and that is the answer to the question of why a photon gas has u=aT4 and the ideal gas has u=bT: because 

at a given temperature, pressure in an ideal gas does not contribute to energy, whereas pressure in a 

photon gas is proportional to energy in the form p=(1/3)u. 

 

Blackbody spectral fraction. Computing the fraction of blackbody radiation within a spectral band is 

important is many applications, what can be helped by the mathematical equality (obtained by integrating 

by parts a series expansion of Plank’s law): 

  

https://en.wikipedia.org/wiki/Energy%E2%80%93momentum_relation
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Two infinite blackbodies in a parallel-plate configuration exchange a heat flux of  4 4

ij j iq T T  . 

Radiation-exchange between real bodies is modelled by introducing separate directional and spectral 

factors when possible (only for isothermal diffuse surfaces with only two spectral bands of interest), or by 

statistical ray tracing modelling in the more general case (using Monte Carlo method). 

 

Exercise 4. A manufacturer of electrical infrared heaters quotes in the applications of its products a 

maximum heating power of 1.2 MW/m2. What can be deduced about the operation 

temperature of its heaters? 

Ans.:  Assuming the heater elements to be black-bodies, from  4 4

0q T T  , we deduce 

 
1/4

4

0T T q      
1/4

4 6 8300 1.2 10 5.67 10   =2145 K (1870 ºC). There are some heater 

elements close to black-bodies, as carbon heaters, whereas typical industrial heaters use 

kanthal wire (an iron-chromium alloy), which has an emissivity =0.7, and would need to be 

operated at 2300 K to yield that power, what is not realistic because its melting temperature is 

below 2000 K. There are, however, other metals withstanding higher temperatures (wolfram 

works above 3000 K in halogen lamps), but they are much more expensive and difficult to 

work with: they oxidise quickly, they are brittle, etc. 

 Notice that one may understand the heating power as the emittance, i.e. 4q T , because, at 

high temperatures the difference is imperceptible,  
1/4

T q  =(1.2·106/(5.67·10-8)1/4=2145 

K (1870 ºC), but for lower heating powers the difference may be inadmissible (e.g. which 

temperature must have a heater for q =1 kW/m2,  
1/4

4

0T T q    128 ºC or  
1/4

T q 

=91 ºC?).  

Real bodies: interface 

The ideal blackbody model is in essence an interface model, describing the radiation entering or leaving a 

small hole in a cavity. The interaction of thermal radiation with real bodies departs from the blackbody 

model in several respects: 

 At the surface (i.e. an interface with abrupt change in refractive index). Real bodies do not 

absorb all the incident energy because there is some reflection and some transmission. If the 

transmitted energy is totally absorbed shortly within the body (say in less than 1 mm), the body 

is said to be opaque, and the absorption process can be ascribed to the interface, calling 

‘absorptance’ the fraction of the incident energy absorbed (i.e. not reflected back). As a 

consequence of the energy balance, a partially absorbing surface must be partially emitting, i.e. 

at the same temperature, real bodies emit less energy than black-bodies, what is quantified by 

the factor named emissivity. See thermo-optical surface properties data. 

 At the bulk (of a constant or slowly varying refractive index media). Real bodies transmit 

radiation energy with some absorption (intensity decays exponentially along the path), and some 

scattering (re-radiation at the same or different wavelength in other directions than the path). 

http://imartinez.etsiae.upm.es/~isidoro/dat1/Thermooptical.pdf
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According to the decay length, substances are grouped into two limit cases: opaque materials (if 

the decay length is less than the thickness of interest, and transparent materials (if the decay 

length is much larger than the thickness of interest); for instance, a 20 nm gold layer (deposited 

on a transparent substrate) is transparent enough to see through it (it has 20 % transmittance in 

the visible range). 

 

One should always keep in mind that ascribing physical properties to a geometrical surface is just a 

simplifying limit; in reality, like in a blackbody cavity, radiant energy is absorbed or emitted within a 

sizeable thickness, not just at a geometrical surface. 

Emissivity 

Real surfaces emit less energy than the ideal blackbody at the same temperature, what can be measured 

by an energy balance test in a non-equilibrium arrangement (e.g. within a cryogenic vacuum chamber). 

Spectral emissivity is defined in detail as the fraction of spectral radiance in a given direction, relative to 

blackbody radiance under the same conditions: 
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whereas spectral hemispherical emissivity is defined in terms of emittance: 

 

 

2 2

2

2 2

0 0 0 0

2
,bb

,bb

0 0

cos sin d d cos sin d d

cos sin d d

T T

T
T

T

T

L
M

M
L

 



 

   


 





        




   

  
   

 

 (24) 

 

and if there is azimuthal symmetry 
2
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        . A total hemispherical value can be 

defined by: 
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where spectral emittance and radiance for a blackbody, MT,bb and LT,bb, were given by (10). When 

emissivity does not change with direction, LT/LT, it is termed diffuse emission or Lambertian 

emission. In that case, the emitted power flux varies proportionally to the projected area of emission, i.e. 

with the cosine law, M=M0cos; a hot spherical surface is seen with a uniform flat brightness due to area 

compensation; however, a metallic hot sphere appears darker at the centre because metal emissivity is 

greater towards the horizon, whereas hot non-metal spheres look brighter at the centre because emissivity 

of dielectrics tends to zero at levelling angles. Blackbody emission verifies Lambert’s cosine law.  
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Unless otherwise stated, emissivity values refer to quasi-total hemispherical values where the integration 

in (15) is restricted to the far infrared band, FIR, 3 m<<30 m, and the emitting surface is at near room 

temperature, T300 K. Notice that, according to ISO 20473-2007, FIR range is 50..1000 m, but we 

prefer to refer IR-bands to atmospheric windows. Emissivity dependence with temperature and direction 

is often negligible, but variations with wavelength may be important.   

 Non-metals emit in the infrared nearly as blackbodies (say >0.8), irrespective of structure or 

apparent visible colour (e.g. white paint emits nearly the same as black paint, and the same for 

human race skin colours). Directional emissivity tends to zero at level directions. In the case of 

transparent coatings in the infrared, actual emissivity of a coated surface depends on emissivity of 

the substrate. 

 Metal emissivity varies a lot with surface state (<0.1 for polished metals, to >0.8 if hard 

oxidised), with direction of measurement (it is maximum near level directions, says at ≈80º, 

sharply decreasing to zero at level directions, =90º), with temperature (slowly increases), and 

with wavelength. For wolfram (tungsten), total hemispherical emissivity increases from =0.09 at 

300 K to =0.39 at 3000 K (with a large spectral slope; at 3000 K, =0.45 at =0.5 m and 

=0.20 at =4 m). Notice that the short-wave radiation emitted by a lamp bulb (and quartz 

covered heaters) is limited by the transmittance of the protection (normal glass bulbs have a cut-

off at 3 m, and quartz bulbs at 5 m with a dip in transmittance at 2.8 m). 

Absorptance 

When a material surface at temperate T is exposed to monochromatic beam along a direction (,) of 

radiance L (irradiance dE=Ld; notice that they are independent of surface conditions), only a 

fraction T is absorbed (increasing internal energy; now dependent on surface conditions). 

Reversibility of detailed thermodynamic equilibrium implies: 

 

  Kirchhoff 's law 1859T T      (26) 

 

since, if one considers an element of a real surface as part of a blackbody cavity (i.e. in equilibrium at 

uniform temperature), the isotropy preservation of blackbody radiation and the local energy balance 

implies that TT=T and T= for a blackbody. 

 

Spectral hemispherical absorptance is then: 
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and if the incident radiation is diffuse and there is azimuthal symmetry in the absorptance,
2

0

2 cos sin dT T



        . A total hemispherical value can be defined in terms of the spectral 

irradiance shining on the surface: 
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Unless otherwise stated, absorptance values refer to normal incidence solar radiation, i.e. approximately 

to incident blackbody radiation at 5780 K (0.3 m<<3 m, or 0.1 m<<3 m if the extra-terrestrial 

UV band is included), since absorptance in the far infrared band (FIR) is almost equal to emissivity in 

FIR (equal for monochromatic radiation, from Kirchhoff's law). From what is said under Emissivity, FIR 

absorptance values are almost unity for non-metal surfaces (except in case they are transparent in FIR), 

whereas polished metal surfaces reflect most part of FIR radiation. For opaque surfaces in general, what 

is not reflected is absorbed: =. Water absorbs practically all at 3 m, PVC at 3.5 m. 

Reflectance 

Real surfaces reflect part of the incident irradiation, , which can be measured with a radiometer, first 

measuring the irradiance (radiant flux incident on the surface by unit area, E), and thence the radiance 

(radiant flux exiting the surface by unit area and unit solid angle, L). For a Lambertian surface, =L/E, 

but for real surfaces, reflectance depends on both, the incoming and outgoing directions considered (as 

well as on wavelength and surface temperature). Preservation of the isotropy in the interaction of a real 

surface with blackbody radiation dictates that bidirectional spectral reflectance at a given wavelength is 

the same when both directions (incident and reflected) are exchanged, i.e. T''=''T. Detailed 

reflectance measurements are computed by dividing the increment of exitance from a real surface by the 

irradiance used for the probing.  

 

For opaque surfaces in general, what is not absorbed is reflected: =. Transparent surfaces reflect a 

small fraction of incident radiation due to the difference in refractive index: =(n1n2)
2/(n1n2)

2; e.g. in 

the visible band, for common glass in air, n1=1, n2=1.5 and =0.04; in the far infrared band (i.e. around 

=10 mm), for germanium in air, n1=1, n2=4 and =0.36.  

 

Reflection at real surfaces always has some scattering. Several limit cases are of most interest: 

 Specular reflection, when there is no scattering and the reflected ray has an opposite angle to the 

incident ray, relative to the surface normal, 1=2. Mirrors approach this behaviour. Polished 

metals are good mirrors in the visible, infrared and microwave bands, although common mirrors 

are not first-surface mirrors but second-surface mirrors where a metal coating (silver in most 

cases) is behind a transparent glass sheet. 

 (Perfect) Diffuse reflection, when reflectance is uniform for all outgoing direction. The reflected 

power flux varies proportionally to the projected area of emission, i.e. with the cosine law, 

M=M0cos. When a planar surface of such a perfect diffuser is illuminated by a beam in any 
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direction, the surface appears uniformly illuminated, due to area compensation, however, in the 

case of an illuminated curved surface, it appears brighter in the regions where the shining beam 

falls more perpendicular (e.g. a frontally illuminated sphere appears brighter at the centre; the 

Moon is not a perfect diffuser, as explained below). Spectralon®, used in optical metrology and 

as a reference surface in remote sensing, is a fluoropolymer with nearly perfect diffuse 

reflectance to solar radiation (>0.99 from 400..1500 nm, and  >0.95 in the whole range from 

250 nm to 2500 nm; but <0.2 for >5.4 m). 

 Retro-reflection, when the reflected ray goes out precisely in the same direction than the 

incident ray. The fact that the Moon is seen almost uniformly illuminated by the Sun at full 

Moon (instead of being brighter at the centre as for a perfect diffuser), is explained by the retro-

reflective properties of lunar dust.  

 Advanced shading models. Several shading models have been lately developed for computer 

graphics, to better match real directional reflectance data. For heat transfer problems, the perfect 

diffuser model is sometimes enhanced to a two-term reflection model: a (perfect) diffuser 

reflectance, plus a specular reflectance.  

Transmittance 

Transmittance at an interface is the fraction of incident radiation energy that propagates to the rear of the 

interface, always with a change in direction (from the incident direction), which can be collimated 

(refraction), or scattered. An energy balance indicates that, at any interface, absorptance plus reflectance 

plus transmittance must equal unity, =1.  

Real bodies: bulk 

Bulk effects on radiation-matter interaction are rarely considered in spacecraft thermal control, where the 

model of opaque surfaces is the rule; only a few cases of transparent materials are used in STC, notably 

second surface mirrors, and viewing windows in vehicles and space suits. 

Absorptance and transmittance 

Radiation absorption and transmission are bulk processes (ascribed to the surface when the penetration 

distance is very small). When considering bulk behaviour, instead of reflection (re-transmission 

backwards) one considers scattering, which is the re-transmission in all directions (backward and 

forward) except in the prolongation of the incoming ray, which is termed transmission. Hence, the energy 

balance establishes that absorption plus scattering plus transmission equals unity. 

 

Absorption (or better, transmission) within a medium is characterised by an attenuation or extinction 

coefficient, , (be careful to avoid confusion with surface absorptance with the same symbol; now  has 

dimensions of m-1), such that radiation intensity falls exponentially along the path as I(x)=I0exp(x), 

what is known as Beer-Lambert's law. The extinction factor includes the effect of absorption and 

scattering, and is a function of wavelength. A layer of pure water seems transparent (and indeed some 

blue rays may penetrate 100 m down the surface), but it absorbs all infrared radiation in the first 

millimetre (except when it impinges at level angles).  
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For finite thickness, the optical depth, , is defined by Iout=Iinexp(), and depends on wavelength. Clear 

sky has a total optical depth of 0.35 along the vertical path; aerosols increase the optical depth, making 

the Sun difficult to locate when >4. In engineering problems however, it is still common to talk about 

absorptance and transmittance factors (not coefficients) when dealing with finite transparent materials, 

and apply =1 globally. 

 

When transmission occurs in a collimated way, it is termed refraction, and the ray directions verify 

Snell’s law, n1sin1=n2sin2, where n is the refractive index and  the angle with the normal to the 

interface. Other times, transmission is not collimated but scattered, losing the ability to form images (the 

material is then said to be translucent). 

Scattering  

In general, scattering is the process in which particles (material or electromagnetic) travelling along a 

given direction are deflected as a result of collision (interaction) with other particles (material particles). 

Electromagnetic scattering can be due to different processes, classified as elastic and non-elastic.  

 Elastic scattering, where the wavelength is preserved. It may take place under several 

circumstances: 

o At interfaces, what gives way to diffuse reflection. 

o At molecular level in the medium, what is known as Rayleigh scattering. The scattered 

pattern is lobular symmetric (i.e. axisymmetric and symmetric to the normal plane), and 

the intensity is proportional to -4 (i.e. scatters more the lower the wavelength, what gives 

way to the bluish of our atmosphere and oceans),  

o At particles comparable in size to the radiation-wavelength, what is known as Mie 

scattering (G. Mie solved in 1908 Maxwell equations for the interaction of an EM-wave 

with a dielectric sphere) or Tyndall’s effect (J. Tyndall was the first to attribute in 1859 the 

bluish of the sky by selective scattering, later explained by Rayleigh). The scattered pattern 

is lobular non-symmetric, larger forward, with intensity independent of frequency.  

 Non-elastic, where the wavelength changes, like in Raman scattering at molecular level. 

Measuring thermal radiation 

Electromagnetic radiation is characterised by its energy amount (J/m3 if standing, or W/m2 if 

propagating), its oscillation frequency,  (or wavelength, , with =(c/n)/=0/n), and other parameters of 

little interest for thermal radiation, like polarization, coherence, pressure, etc. 

 

Radiometers measure the amount of radiation coming from a field of view and falling onto a detector. 

The field of view (FOV) is delimited by a series of holes, or focused by refractive lenses, or mirror 

reflectors. The incoming radiation may be due to emission by objects in the FOV, by reflection on them 

from other bodies, and by transmission through matter from the background). We only deal here with 

thermal radiation, and thermal detectors are described below. Detectors for shorter-wavelength radiations 

may be photographic films (for visible, ultraviolet, X-rays), supersaturated phase-change media (e.g. 

Wilson cloud chamber), gas-discharge devices (e.g. Geiger counter), etc. Detectors for longer-wavelength 
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radiations are resonant electrical circuits known as aerials or antennas, with size proportional to 

wavelength, and sometimes with a reflector to concentrate the EM-field to be detected. 

 

The primary standard (the World Radiometric Reference, from the World Meteorological Organization) is 

based on absolute cavity radiometers. An absolute radiometer consist of a black cavity with an absorber 

connected to a heat sink through a precision heat flux transducer (a thermopile), upon which two beams 

can be directed using appropriate shutters: the sample irradiance to measure (e.g. a solar beam), and a 

calibrated beam from a radiant electrical heater, controlled to maintain the same heat flux with and 

without the sample beam. In other versions, two opposite cavities are used, connected through the heat-

flux assembly; if Pshut is the heater power with the sample beam shut, and Popen the power when sampling, 

the total beam irradiance is found from E=k(PshutPopen), with k obtained from Eele=kPshut, with Eele and 

Pshut measured. As for any electronic sensor, periodic calibration is needed (against a controlled 

blackbody cavity). 

 

Thermal radiometers can be classified on different basis: type of detector, spectral range, directional 

range, array size, etc. 

Infrared detectors 

According to detector type, measuring thermal radiation can be based on different effects: 

 Thermal effects. Incoming radiation is focused on a thermal detector (a tiny blackened electrical 

thermometer), whose temperature variation is measured. Two thermometric effects can be used: 

electric resistance (with a tiny thermistor called ‘bolometer’), and thermoelectric voltage (a 

series array of thermocouples called ‘thermopile’). For a given irradiation, the response is the 

same for any spectral distribution, but as emissive power falls rapidly with falling temperature, 

thermal detectors are not suitable for low temperatures. Thermal detectors are the most common 

for total thermal radiation, but used to have lower sensitivity and response time than quantum 

detectors; nowadays, thermistors and thermopiles made by metal deposition are bridging the 

gap. The response of thermal detectors depends on the temperature of the detector’s body and 

supports, which must be tightly controlled. 

 Quantum or photon effect. Incoming radiation causes an electric charge release that is measured 

by photovoltaic, photoelectric, or photoconductive effects. Quantum effect detectors have an 

upper bound in wavelength response, and work best in a narrow waveband just below that cut-

off wavelength, were sensibility is much greater than for thermal detectors. For a given 

irradiation power, E, the response is proportional to the number of photons, and thus to , since 

E=Nh=Nhc/=constant. Quantum-effect detectors are based on electron transitions in 

semiconductors, notably in the valence band of CdTe-HgTe alloys (known as HgCdTe), which 

requires cryogenic cooling for good signal-to-noise ratio, and more recently in the conduction 

well in GaAs. 

 Optical effects. Incoming radiation is visually compared with radiation emitted by a calibrated 

source (optical pyrometer). 

 Chemical effects. Incoming radiation cause a chemical reaction. Since thermal radiation is not 

very energetic, it only applies to visible and near infrared detection in special photographic film. 
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According to spectral range: 

 Total radiometers. They measure total radiation (i.e. the integral effect of all wavelengths, 

always limited by the optics). Sometimes, detectors with narrow-band sensitivity are used to 

infer total radiation. 

 Spectro-radiometers. They measure in a narrow spectral band, selected by appropriate spectral 

filters, or a polychromators (dispersion in a prism or in a fibre optic, or diffraction in a 

diffraction grating) and special filters (resulting in a monochromator device). 

o In the near IR band (say 0.7..1.4 m. Silicon, germanium, indium-gallium arsenide 

(InGaAs), or photographic detectors, can be used (IR-CCD since 1978). In this range, SiO2 

has high transmittance (used in fibre optics), and water has low absorption. Used for night 

vision with CCD image intensifiers, and for spectroscopic analysis. Quartz windows are 

used. Notice that sometimes near-IR lighting is used as an active means to enhance night 

vision. 

o In the short or middle IR band (say 3..5 m, centred around the first atmospheric window), 

indium antimonide (InSb), lead selenide (PbSe), or mercury cadmium telluride (HgCdTe) 

detectors can be used. Sapphire windows are used. With these kinds of detectors, IR-guided 

missiles follow the thermal signature left by aircraft (the exhaust nozzle and plume are at 

some 1000 K). 

o In the long or far IR band (say 8..14 m, centred around the main atmospheric window), 

HgCdTe detectors are used, which work in a broad infrared band including the middle IR. 

Germanium windows are used. Mercury Cadmium Telluride (MCT) is a photoconductive 

alloy of CdTe and HgTe; CdTe is a semiconductor with a bandgap of approximately 1.5 eV 

at room temperature. HgTe is a semi-metal, hence its bandgap energy is zero, so that by 

selecting the composition one may tune the optical absorption of the sensor to the desired 

infrared wavelength. MCT is expensive, difficult to get in good homogeneity, and must be 

operated at cryogenic temperatures (below 100 K). A recent substitute of MCT (less 

expensive but with lower performances) is gallium arsenide (GaAs). 

 

According to field of view (directional range): 

 Normal radiometers. They measure radiation coming from a narrow field of view. In the case of 

solar radiation they are known as pyroheliometers. 

 Hemispherical radiometers. Only used to measure total solar radiation at ground level, for 

meteorological or solar-energy applications. They are known as pyranometers (see below). 

 

According to the temperature range of the object: 

 Pyrometers, if especially suited to high temperature measurement. 

 Radiometers. In general. 

 

According to the spatial scanning: 
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 Point radiometers. They use one single sensor (belonging to one of the mentioned types) to 

yield a single spatial measurement of radiation or the associated temperature.  

 Thermal cameras (or thermo-cameras, or infrared cameras). They yield a two-dimensional 

measurement. Old devices (up to 1970) were based on a mechanical 2-D scanner and a point 

radiometer; others used a linear array of sensors and 1-D mechanical scanning, while modern 

ones (since 1980s) use a 2-D array of sensors electrically scanned; the most accurate and quick-

response IR sensors use HgCdTe detectors at cryogenic temperature, but they are very 

expensive and difficult to maintain. More recent technology was based on monolithic CMOS 

focal plane arrays of InSb or InGaAs. The newest cameras are based on uncooled micro-

bolometers (see below); they are cheaper, smaller, consume less power, and require no cooling 

time (although they must be temperature-stabilised for proper accuracy). Micro-bolometer 

cameras are used for accurate temperature measurement, but their resolution is currently limited 

to 0.5 mega-pixel (640480). Older pyroelectric CCDs have better spatial resolution and 

response time, but lack accuracy, and need periodic chopping) can be used for more qualitative 

work (e.g. night vision). Thermography is synonymous of IR imaging. Modern thermal cameras 

(of less than 0.5 mega-pixel) cost an order of magnitude more than corresponding visual digital 

cameras of more than 10 mega-pixel (by the way, it helps a lot taking visual images at the same 

time as infrared images). 

Bolometers and micro-bolometers 

A bolometer (from Gr. bolo, thrown) is a thermal-radiation sensor based on the electric resistance change 

with temperature. The first bolometer, made by the Am. astronomer Samuel Langley in 1878, consisted of 

two platinum strips covered with lampblack, one strip was shielded from the radiation and one exposed to 

it, forming two branches of a Wheatstone bridge, using a galvanometer as indicator.  

 

Micro-bolometers are tiny bolometers (micro-machined in a CMOS silicon wafer, see Fig. 4) used in 

detector arrays in modern un-cooled thermal cameras, although their response time is low. It is a grid of 

vanadium oxide or amorphous silicon heat sensors atop a corresponding grid of silicon. Infrared radiation 

from a specific range of wavelengths strikes the vanadium oxide and changes its electrical resistance. 

 

 
Fig. 4. Sketch of a micro-bolometer structure (and a design by Fluke-Infrared Solutions). 

 

The word bolometric is sometimes used as synonymous of total (i.e. spectral integral), but what a 

bolometer detects depend on the filters used. 
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Pyranometers and heliometers 

A pyranometer (from Gr. pyr, fire, ano, upwards), sometimes named solarimeter, is a thermopile-sensor 

radiometer (Fig. 5) that measures all incoming solar radiation (hemispherical, i.e. 2 stereo-radians, and 

total, i.e. from 0.3 m to 3 m in practice). It is the typical device used in meteorology and solar energy 

applications; it is un-powered, and typical sensitivity is 10 V/(W/m2).  

 
Fig. 5. Sketch of a pyranometer: 1, glass dome; 2, thermopile sensor (an array of thermocouples arranged 

in series and wrap around a dielectric film, as detailed in the insert); 3, thermal block; 4, radiation 

protector. 

 

A pyranometer with a shadow band or shading disk blocking the direct solar beam (0.49 rad of arc), 

measures the hemispherical total diffuse sky radiation. Solar beam power can be deduced by difference, 

although another kind of instrument, the pyroheliometer, which has a narrow field of view (some 5º) is 

used for that purpose. 

Measuring thermo-optical properties 

The basic thermo-optical quantities measured at a material surface are emissivity and reflectance, and the 

others are computed from them. 

 

Emissivity is measured by detecting incoming radiation from an opaque body kept at temperature T, 

under a cryogenic vacuum (to avoid reflections), and dividing the result by the corresponding Planck’s 

equation value; either spectral or total measurements are carried out (the device is known as emissometer 

in either case). For total hemispherical emissivity, a simple energy balance may be used with an 

electrically-heated sample in a cryogenic vacuum.  

 

Reflectance is measured by dividing the increase in irradiation detected from an opaque body (i.e. 

discounting emission and transmission), by a sinusoidal variation of the intended irradiation shining on 

the object (i.e. to discount other reflections). The device is named reflectometer, although it is also known 

as emissometer if an infrared source is used to shine on the object, since, for an opaque object in a narrow 

spectral band, Kirchhoff’s law implies =1 for a given direction (several IR-bands, at several incidence 

angles, are measured; usually the most important bands are the atmospheric windows: 3..5 m, and 8..12 

m). Calibration can be provided by a small specular gold sample traced to primary standards (NIST). 

Spectrophotometers measure either reflection or transmission. 

 

Albedo can be measured using two opposite pyranometers aligned with solar radiation, one pointing to 

the Sun, and the other to the sample surface. 

http://www.nist.gov/pml/div685/grp04/iropm.cfm
http://www.nist.gov/calibrations/opticalproperties.cfm
http://www.nist.gov/pml/div685/grp03/spectrophotometry.cfm
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Absorptance in opaque bodies is computed from the energy balance =1, by measuring reflectance, . 

Recall that equality between absorptance and emissivity only applies in general to the detailed balance: 

T=T. Absorptance in transparent media is measured in terms of the exiting radiation, used to 

compute an extinction coefficient (includes scattering). On photovoltaic cells (e.g. in solar arrays) not all 

the absorbed energy goes to thermal energy; for solar cells of electrical efficiency (VI)max/(EA), 

thermal absorption is th=Fp, where Fp is the packaging factor for the cells (Fp=0.8..0.9 is cell area 

divided by panel area A), E is a standard normal irradiance (1370 W/m2 for space cells, but 1000 W/m2 

for terrestrial cells), and (VI)max the maximum electrical power delivered. 

 

Transmittance in transparent bodies is computed in terms of the extinction coefficient and the reflectance 

at interfaces. Maxwell theory shows that reflectance at a dioptric interface is =(n1n2)
2/(n1n2)

2; e.g. 

from air to glass or vice versa, =(0.33/2.33)2=0.02 

IR windows 

The spectral range of most narrow band radiation thermometers is typically determined by the optical 

filter. Filters are used to restrict response to selected wavelengths to meet the need of a particular 

application. For example, the 5±0.2 μm band is used to measure glass surface temperature because glass 

surface emits strongly in this region, but poorly below or immediately above this band. Next, the 3.43±0.2 

μm band is often used for temperature measurement of thin films or polyethylene-type plastics etc. 

 

Atmospheric filter. The atmospheric filter depends a lot on actual water content in the atmosphere, and 

aerosols content in general. Clean air has two main windows in the IR, besides the visual and radio 

windows (Fig. 6): 

 Visible window. Incoming solar radiation energy is 95 % in the =0.3..3 m range (10 % in the 

UV, 40 % in the visible, and 50 % in the infrared).  

 Short IR window, in the range =3..5 m. Complete absorption by CO2 in the range 4.2..4.5 

m, what is used in remote sensing to detect mean air temperature in the troposphere-

stratosphere. The high absorption band in 58 m is used in remote sensing to measure water 

content in the air.  

 Long IR window, in the range =8..14 m. This is the main atmospheric window (see Fig. 6), 

being highly transparent to water vapour, carbon dioxide, smoke, and dust, although there is a 

small absorption band by ozone at 9.510 m, what can be used to measure ozone abundance. 

This long-IR (or far-infrared) band is used in remote sensing to measure surface temperature 

from satellites. The most used material for long-IR optics is n-doped polycrystalline germanium. 

Since the optical refractive index of germanium is high, the reflectance from each surface is 

high and the net transmittance through the germanium is relatively low. The refractive index of 

germanium is 4.0, resulting in 36 % reflectance per surface. The transmittance of uncoated 

germanium is only 47 % through a 1 mm thick piece. In order to improve the IR transmittance 

of the window, a suitable antireflection coating is applied (some 2 m thick low refracting index 

material like thorium fluoride, ThF), reducing window reflectance to <1 %, thereby raising the 

transmittance to >95 %. Additional coatings protect the lens from moisture.  
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 Radio window, in the range =0.01..10 m (corresponding to 30 MH..30 GHz), i.e. including the 

microwave range up to the Ku band. 

 

 

 
Fig. 6. The Earth’s atmospheric filter (clear sky): a) general electromagnetic opacity (NASA/IPAC), and 

b) detailed transmittance (Wiki). The three main atmospheric windows are: the solar band (0.3..3 

m) that gives us the Sun light and heat (and allows our seeing the stars), the long infrared band 

(8..14 m) that allows for some Earth cooling, and the radio band (10-2..10 m, including 

microwaves) that allows for space radio-communications.  

 

https://commons.wikimedia.org/wiki/File:Atmospheric_Transmission.png
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Earth emission energy is over 90 % in the =3..30 m range, with the peak around Mmax=10 m. To this 

peak in the spectrum corresponds a blackbody temperature around 300 K (in any case, close to 288 K 

average surface temperature). However, from the total emittance as seeing from outside, a blackbody 

temperature of 253 K would be deduced. A good simple model is then to take T0=288 K as reference 

surface data, and deduce an average emissivity value, , such that M=T0
4, what yields =0.60. Further 

spectral details of the Earth emission are (Fig. 7):  

 Nearly half of Earth’s emitted energy is in the long-IR atmospheric window (8..14 m), at an 

apparent temperature of 288 K. Without this window, the Earth would become much too warm 

to support life, and possibly so warm that it would lose its water as Venus did, early in solar 

system history.  

 Outside the long-IR atmospheric window, i.e. when the atmosphere is opaque (5..8 m and >14 

m), emission is perceived as coming from a blackbody atmosphere at 218 K, with a total 

average (spectrum integral) of 258 K, what correlates well with ground measurements of sky 

temperature, which are (TambTsky)bolo30 K and (TambTsky)espectral70 K. 

 Measuring the equivalent sky temperature from ground on a clear night, one gets consistent 

values: for total radiation, (Tamb-Tsky)bolo30 K, and, in the atmospheric window 

(TambTsky)IRwindow70 K. 

 
Fig. 7. The Earth’s atmospheric filter for clear-sky conditions. Planet emittance as looking from outside. 

 

When clouds are present, the visible and infrared windows disappear, leaving just the radio window, 

because liquid water, even in finely dispersed aerosols like in clouds, have a much higher absorption and 

scattering than water vapour (some 104 times higher in the main 8..14 m infrared window). 

 

Glass filter. There are several types of glass: 

 Window glass (common glass, comprising >90 % of all glass production), also known as soda-

lime or crown glass (SiO2 75 %, Na2O 15 %, CaO 10 %), is a low-melting-temperature glass 

used for windows and containers. Transmission has a window in 0.3<<2.5 m, with a heap 

transmittance profile that drops from 0.9 at 0.5 m to 0.6 at 1 m for a 10 mm thick glass, with 

near-IR transmittance falling rapidly with thickness (Fig. 8). An ordinary second-surface mirror 
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has a solar absorptance of =0.14 (aluminized; =0.07 if silvered). Notice that a glass window 

do not let ultraviolet and infrared radiation through, what explains the green-house effect, and 

why filament-emission heats up bulbs of incandescent lamps (average absorptance from a 3000 

K source is around 0.7). 

 Quartz glass is pure silica (>99.5 % SiO2, also known as fused silica). Quartz windows (a few 

mm to a few cm thick) have some 90 % radiation transmittance in the range 0.2<<2.5 m. An 

interesting application of selective transmission is the transparent mirror furnace, used for 

observing crystal growth up to 1300 K; in this furnace, a window (or the whole furnace) is made 

of pyrex glass (transparent in the visible) with an internal gold deposition (some 20 nm) 

specular in the infrared and with some transparency (=0.2) in the visible (pyrex is a thermal 

and chemical resistant glass, used for laboratory and oven work, with SiO2 80 %, B2O3 13 %, 

also known as borosilicate glass). 

 

 
Fig. 8. Glass transmittance (lamp bulb, normal pane, thick pane). 

 

Water filter. Water is transparent in the visible (lowest extinction coefficient is 0.02 m-1 at 0.55 m, 

growing to 1 m-1 at the practical cut-offs of 0.3 m and 0.7 m, becoming progressively opaque in the 

infrared, with high absorption near 3 m (what is used in IR heaters). Total transmission of solar radiation 

through 1 m of water is 35 %. 

 

Infrared windows. Table 2 presents data for some infrared transparent materials. 

  

Table 2. IR window materials (ordered by spectral band). 

Material Formula transmission band Notes 

Sapphire Al2O3 0.15..5.5 m Very hard 

Calcium fluoride CaF2 0.15.. 10 m Soluble 

Barium fluoride BaF2 0.15.. 12 m Soluble, fragile 

IR polymer - 0.15.. 22 m Soft 

Zinc selenide ZnSe 0.5.. 22 m Soft. Transmit 99 % 

Germanium Ge 1.8.. 22 m Hard 

 

Thermochromic infrared shutters. Vanadium oxides change their crystalline network at a certain 

temperature from an IR-transparent semiconductor to a IR-opaque metal in the short IR band (3..5 m). 

The most used is VO2, which has the transition temperature around 67 ºC. The activation is performed by 
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pulse heating a very thin gold deposition layer (in some 15 ms), changing the transmittance from 55 % to 

<1 %. 

 

Solar collector filter. In some applications like solar energy collectors, high absorptance with little 

emission is wanted, but, for a given material, high  usually implies high ; a selective coating, however, 

may accomplish that, e.g. by deposition of a thin layer of a dielectric over a metal substrate, such that the 

coating be transparent to long wavelength (and the metal substrate is a low emitter), but opaque and 

absorbent at short wavelengths (e.g. SiO2 deposition on aluminium shows an abrupt cut-off wavelength at 

1.5 m). Care should be paid to distinguish a solar shade filter, designed to prevent solar radiation to let 

through (as in sun glasses, snow goggles, and space suits), from a solar collector filter, whose objective is 

to absorb solar energy without letting long IR radiation to escape (like in a greenhouse as a whole, or in 

the oxide coated metal here described. 

Spectral and directional modelling 

The interaction of radiation and matter is difficult to model because of its inherent directional and spectral 

properties: 

 Directionality. Rays have direction of propagation, which changes by reflection, refraction and 

dispersion in general. And propagation can be halted by opaque bodies. 

 Spectrality. EM-radiation has a spectrum of propagating wavelengths (or frequencies, or 

energies), and matter is very selective to absorption-transmission-reflection-emission of different 

wavelengths. 

 

As said before, the basic thermal radiation model is the blackbody, which is a body that shows no 

particular directional or spectral characteristics: 

 Directionally, a blackbody absorbs all incident radiation independent of direction and wavelength, 

and emits radiation with a well-defined spectrum (only dependent on temperature) and a well-

defined directionality, the cosine law for emittance, M=M0cos ( being the angle to the normal), 

which corresponds to a uniform radiance along any solid angle.  

 Spectrally, a blackbody absorbs all incident radiation (independently of wavelength), and emits 

radiation in accordance with Planck’s law. 

 

Radiation heat transfer analysis is usually limited to perfectly diffusing opaque surfaces (Lambertian 

surfaces), for which the emerging radiance (due to own emission or reflected scattering from others) does 

not depends on direction (i.e. an isothermal sphere will be viewed uniformly brilliant like a frontal disc), 

because although the emitted power from a given area element is reduced by the cosine of the emission 

angle, the size of the observed area is increased by a corresponding amount.  

Two-spectral-band model of opaque and diffuse surfaces (grey surfaces) 

As for the spectral distribution, for most thermal problems both on ground and in space, it is good enough 

to consider only two types of thermal radiation, corresponding to non-overlapping regions of the 

spectrum, with spectral uniformity in each of the two bands: solar, and infrared (far infrared, indeed).  
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 Solar radiation, corresponding to a quasi-blackbody at 5800 K, which peaks in the visible range 

(at about 0.5 m), and has some 10 % of its energy within the ultraviolet range (0.3..0.4 m), 40 

% in the visible range (0.4..0.7 m), and 50 % in the near-IR range (0.7..3 m). For the interaction 

of solar radiation with matter, both for direct sunshine and for albedo, the following properties are 

defined: 

o Solar absorptance, s (usually without sub-index, since there is no possible confusion 

because by Kirchhoff’s law it should be equal to the emissivity of a body at around 6000 

K, what is of no practical interest because materials cannot withstand such high 

temperatures). 

o If only the solar absorptance is given for a surface, it should be understood that the 

surface is opaque and that the rest of the incoming energy is diffusively reflected, i.e. 

=1. In more detailed numerical simulations (e.g. in ESATAN), four parameters are 

given to model the interaction of solar radiation with matter: solar absorptance , solar 

transmittance , solar diffuse reflectance diff, and solar specular reflectance spec, such that 

++diff+spec=1. For photovoltaic materials, solar absorptance is partially converted to 

electricity (and the rest heats up the material). If the energy conversion efficiency is 

defined in terms of electrical voltage and intensity produced by incident radiation power as 

=(VI)max/(EA), then the electrical power produced is W EA  and the effective heating 

input  inQ EA   .  

 Infrared radiation, corresponding to a quasi-blackbody at 300 K, which peaks in the far-infrared 

range (at about 10 m), and has 89 % of its energy within the far-infrared range (3..30 m). The 

properties averaged for this spectral band are applied to radiation emitted, absorbed, transmitted, 

or reflected by a given material at whatever its real temperature, from 100 K to 1000 K (a 

blackbody a 1000 K emits 27.3 % in the near infrared range 0.7..3 m, 72.2 % in the far infrared 

range 3..30 m, and 0.5 % with >30 m). The following properties are defined: 

o Infrared emissivity, IR (usually without sub-index, since there is no possible confusion). 

Infrared absorptance is never explicitly given since, by Kirchhoff’s law, it is equal to the 

emissivity of the body, IR=IR. 

o If only the infrared emissivity is given for a surface, it should be understood that the 

surface is opaque, that it absorbs infrared radiation with IR=, and that the rest of the 

incoming energy is diffusively reflected, IR=1IR. In more detailed analysis (e.g. in 

ESATAN), four parameters are given to model the interaction of infrared radiation with 

matter: infrared emissivity , infrared transmittance , infrared diffuse reflectance diff, and 

infrared specular reflectance spec, such that ++diff+spec=1. 

 

When only spectral-average thermo-optical properties (one value in each band) are considered, the model 

is said to be of a ‘grey surface’. Thermo-optical properties based on this two-band model can be found in 

any Heat Transfer book; vales for typical thermal control surfaces used in spacecraft thermal design are 

presented aside. 

 

http://imartinez.etsiae.upm.es/~isidoro/dat1/Thermooptical.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/Thermooptical.pdf
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Even when radiation comes from intermediate-temperature sources, as red-hot materials (at 1000 K or 

more), the splitting of radiation effects in just the two bands described above, may be a good 

approximation, much simpler than taking care of all spectral details. However, for thermal radiation of 

very hot objects (in the range 1500..3000 K), the change with temperature of IR must be considered, but 

visible radiation can still be neglected in the energy balance (only some 5 % of the energy consumed in an 

incandescent lamp goes to visible light). 

MODELLING RADIATION COUPLING 

After the study of radiation properties, we deal now with the geometrical aspects involved in the radiative 

coupling between an emitter (a source with or without reflection from other sources) and a receiver (an 

absorber with or without reflection to other sources). We only consider infrared radiation coupling 

between opaque material surfaces separated by a non-absorbing non-scattering medium (vacuum or thin 

dry air, but not liquids or aerosols). Solar radiation (either direct or reflected) is considered as a known 

input. If non-diffuse or semi-transparent materials, or absorbing media, must be considered, then a 

different modelling is required (statistical ray-tracing techniques are used). 

 

Radiation coupling for thermal control is usually studied considering lumps of material assumed to be at 

uniform temperature (the Lumped Network Method), following the view factor approach explained 

below, whereas similar radiative configurations are studied in much finer spatial detail as a further insight 

to thermal radiation modelling, and for illumination purposes (a detailed analysis of simple non-uniform 

distribution problems may help to better understand the validity of the assumptions commonly introduced 

in radiative heat transfer problems; e.g. the distribution of absorbed power may indicate that the 

isothermal assumption might be inadequate). 

Radiation from a small patch to another small patch. View factors 

Consider a differential surface patch dA1, a hemisphere centred on it (Fig. 9), and a radiant power d1 

[W] exiting from dA1, either because of its own emission (d1=dA11T1
4), or due to reflection from an 

incident flux (d1=dA11E1); no transmission from the rear of dA1 is considered, so that in general 

d1=dA1(1T1
4+1E1). If only IR radiation is considered, one thermo-optical parameter is needed, since 

IR=IR=1IR. We want to know how much of this radiation will impinge on another infinitesimal patch 

dA2 (in the hemisphere or projected on it), i.e. the irradiance E2 [W/m2] it gets, and how a ‘viewer’ at dA2 

will ‘see’ dA1 (i.e. how much energy per unit time, per unit area at the source, and per unit solid angle of 

the optical system, will get a detector at dA2 from dA1). 
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Fig. 9. Notation for studying radiation from a differential patch dA1 to its viewing hemisphere. Let dA2 be 

a surface patch at the hemisphere of radius r. Sometimes  is used instead of  for the polar angle 

or co-latitude. 

 

Perfect diffuser 

Radiant power (1) and emittance (exitance, really, M1d1/dA1=1M1,bb+1,IRE1), may be distributed 

along the measuring direction in a complicated way in real surfaces. We restrict our attention to perfect 

diffusers (diffuse surfaces in brief), for which the radiated power of a surface patch in a given direction 

(the intensity, I1d1/d) varies with the cosine of the polar angle, cos1, what implies that the power per 

projected area and solid angle (the radiance, L1≡d21/(dA1d), i.e. the ‘brightness’ seen by a detector), 

does not depends on the viewing direction, provided exitance at the surface is uniform (isothermal, with 

uniform emissivity, and uniformly lit and reflecting).  

 

A blackbody is a perfect diffuser, as can be demonstrated by considering a blackbody enclosure at 

thermodynamic equilibrium, with a central patch dA1 and any other patch at the hemisphere above (of 

area dA2); blackbody radiation being isotropic implies d212=d221 (i.e. output=input) for any direction, 

with d212=L(1)dA1d12=L(1)dA1cos1dA2/r12
2, and d221=L(2)dA2d21=L(0)dA2dA1/r21

2; 

equality thence implies that L(1)=L(0), i.e. the radiance of dA1 seen from dA2 (which cannot depend on 

the chosen patch because of blackbody isotropy), coincides with the radiance of dA2 seen from dA1, at 

any angle. 

 

View factors 

Consider two infinitesimal surface patches, dA1 and dA2 (Fig. 10), in arbitrary position and orientation, 

defined by their separation distance r12, and their respective tilting relative to the line of centres, 1 and 

2, with 01/2 and 02/2 (i.e. seeing each other). The radiation intercepted by surface dA2 coming 

directly from a diffuse surface dA1 will be: its radiance L1, times its perpendicular area dA1, times the 

solid angle subtended by dA2, d12; i.e. d212=L1dA1d12=L1(dA1cos(1))dA2cos(2)/r
2. The view factor, 

F12 (more explicitly written F1→2) is defined as the fraction intercepted by A2 from the total energy 

radiated from A1. In the case of two infinitesimal areas, dF12d212/(M1dA1): 
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 (29) 

 

 
Fig. 10. Geometry and notation for view-factor definition. 
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whereas for finite surfaces (they must be isothermal and diffuse); the problem is just of integration 

(although not a trivial one):  

 

 
2 2

cos cos cos cos1
d d d d

i j

i j i j

ij j ij j i

ij i ijA A

F A F A A
r A r

   

 

 
   
 
 
   (30) 

 

View factor algebra 

When considering all the surfaces under sight from a given one (enclosure theory), several general 

relations can be established among the N2 possible view factors, what is known as view factor algebra:  

 Bounding. View factors are bounded to 0Fij1 by definition (the view factor is a fraction). 

 Closeness. Summing up all view factors from a given surface in an enclosure, including the 

possible self-view factor for concave surfaces, must equal unity, 1ij

j

F  , because the same 

amount of radiation emitted by a surface must be absorbed at the end (no escape is possible). 

 Reciprocity. Noticing from view factor definition (20) that 

dAidFij=dAjdFji=(cosicosj/(rij
2))dAidAj, it is deduced that 

i ij j jiAF A F . 

 Distribution. When two target surfaces are considered at once, we have 
,i j k ij ikF F F   , based 

on area additivity in the definition. 

 Composition. Based on reciprocity and distribution, when two source areas are considered 

together, we have    ,i j k i ik j jk i jF A F A F A A    . 

 

For an enclosure formed by N surfaces, there are N2 view factors (each surface with all the others and 

itself). But only N(N1)/2 of them are independent, since another N(N1)/2 can be deduced from 

reciprocity relations, and N more by closeness relations. For instance, for a 3-surface enclosure, we can 

define 9 possible view factors, 3 of which must be found independently, another 3 can be obtained from 

i ij j jiAF A F , and the remaining 3 by 1ij

j

F  .    

 

Exercise 5. Find the view factor from a small area dA1 normal and centred with respect to a circular disc 

of radius R a distance H apart, from the view factor definition. 

Sol.: View factor, F12, is defined as the fraction of energy radiated out by A1 that reaches A2. For 

two infinitesimal patches, dF12d212/(MdA1)=cos1cos2dA2/(r12
2). Consider the sketch in 

Fig. E5, representing two equivalent configurations for A2: the said planar disc, and the 

projected spherical cap centred at the patch and of radius 2 2H R   . Let h≡H/R. 
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  Fig. E5. Profile and front view for the two equivalent configurations to compute F12: the said 

planar disc (in bold), and the projected spherical cap. 

 

 If we integrate  2

12 1 2 2 12d cos cos dF A r    in the case of the real disc, choosing as 

independent variable 0rR, and with cos1=cos2=H/r12, 2 2

12r H r  , and dA2=2rdr, 

we have: 
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 Of course, we might have used 1 as independent variable to do the above integration, instead 

of r, but we prefer to follow another approach: to compute F12 by projecting the real disc area 

against the sphere centred in dA1 and bordering the disc (Fig. E5). In this case, and choosing 

as independent variable 01arctan(R/H), we have 2=0 for any differential spherical patch, 
2 2

12r H R  , and dA2=2r12sin1r12d1, what yields: 
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 Although it is a matter of choice, this second method of view-factor computation has the 

advantage that the radial distance is constant and the spherical patch is always normal, 

simplifying the integration.  

 

 The later procedure (i.e. considering the spherical cap) can be directly based on solid-angle 

dependence of view factors, i.e. from dF12d212/(MdA1)=L1dA1cos1d12/(L1dA1)= 

cos1d12/, and hence F12=cos1d12/=cos1(2sin1d1)/sin(21)d1, and so on as 

before. Notice that, as a function of the semi-conical angle =arctan(R/H), the view factor can 

also be set as F12=sin2. 

 

 Finally notice that, in spite of the view factor from the patch to the disc being equal to the 

view factor from the patch to the spherical cap (or any surface limited by the same solid 

angle), the irradiance distribution is very different: it falls with cos41 on a planar disc, and 

with cos1 on a spherical cap. For instance, for a blackbody patch dA1 (say of 1 cm2) at 

T1=1000 K, with an emittance of M1=T1
4=57.8 kW/m2 (and radiance L1=M1/=18.4 kW/m2), 

the irradiance on a parallel patch dA2 a distance d=1 m apart (say of another 1 cm2) is 

dE2=L1dA1/d
2=0.184 kW/m2, deduced from the general expression, 

dE2=M1dA1F12/dA2=M1dA1cos1cos2/(r12
2); now, the radial variation for dA2 on a planar 

disc at a distance d is dE2=M1dA1cos1cos2/(r12
2)=L1dA1cos2/(d/cos)2=L1dA1cos4/d2, i.e. 
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(184 W/m2)·cos4, in our example, whereas the radial variation for dA2 on a spherical cap 

with vertex at a distance d is dE2=M1dA1cos1cos2/(r12
2)=L1dA1cos/d2, i.e. (184 

W/m2)·cos, in our example. 

  

 Conversely, the radiation power received by a frontal patch from any perfectly-diffuse (or 

blackbody) surface seen with the same solid angle in that direction, at the same temperature, 

is the same; i.e. we get the same irradiance from our huge spherical Sun, than from a small 

thumb-size circular disc at 5800 K an arm-distance away if they subtend the same solid angle 

(only at a small patch, like our pupil, as said). 

 

Large compilations of view factors for different geometries exist, but not all of them admit an analytical 

expression. A compilation of analytical view factors may be used to solve many radiation heat transfer 

problems of space technology or more wide industrial interest, using the development presented below. 

Numerical computation of the quadruple integral implied in (30) is cumbersome; a simple procedure 

based on a Monte Carlo method is presented as an Example aside; among deterministic methods, one can 

directly compute the quadruple integral mentioned, or reduce it to a double line integral along the edges 

of the participating surfaces applying Stokes' theorem of vector calculus.  

 

Before the computer era, graphical calculations were used. Nusselt, one of the pioneers in radiation heat 

transfer, applied the unit-sphere method to compute the view factor from a patch to any arbitrary surface; 

it considers the patch at the centre of a hemisphere of unit radius, the projection over the floor (where the 

patch sits) of the layout of the solid angle subtended by the arbitrary surface over the unit hemisphere, has 

an area equal that coincides with the view factor.  

Radiative coupling 

We want to find the heat transfer by radiation from a surface within evacuated enclosures formed by 

opaque Lambertian (i.e. perfectly diffuse) grey surfaces, each considered isothermal (i.e. a lumped 

radiation network). The meaning of terms: 

 Surface radiation in vacuum means that we only consider surfaces as the source and sink of 

radiation, with no participating media in between. This may be a good approximation to radiation 

through air (particularly through dry air within not too-large-size systems).   

 Enclosure means that all the 2-steradians of viewing from a surface patch are considered. A 

background surface can always be thought to close an otherwise open environment (in space, the 

cosmic background, with T∞=2.7 K).  

 Opaque means that no transmission of radiation through the surface is considered (for 

semitransparent materials, a Monte Carlo ray-tracing attenuation model should be applied). 

 Lambertian means that surfaces are considered perfectly diffuse for emission and for reflection. 

Non-diffuse inputs (directional beams like solar radiation and lasers) must be accounted aside as 

‘heat gains’. Non-diffuse outputs like mirror reflections must be accounted separately. The Monte 

Carlo model of ray tracing can accommodate any non-Lambertian behaviour. 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf


 

Heat transfer and thermal radiation modelling page 41 

 Grey surface means that all thermo-optical properties are independent of wavelength in the far IR 

band, which is the only one being accounted in the network model. 

Lumped network method (LNM) 

In the lumped network method (LNM), the enclosure is divided into N isothermal surfaces (sides); each 

surface, of area Ai and temperature Ti, is considered a thermodynamic closed subsystem with energy 

balance i i i,dis id dC T t W Q  , where Ci is the node thermal capacity, Ti its temperature, i,disW  a possible 

dissipative work power (from Joule effect, or collimated beams), and 
iQ  the net heat rate received 

(always due to temperature difference) which we split in its conductive (contact) and radiative (non-

contact) parts, ,coniQ  and ,radiQ , respectively (we use ‘con’ on purpose, to add convection, if any, to the 

conduction term). When a material element has several faces (e.g. a plate with two sides), it may be 

advantageous to consider each face as a different node, with a proper share of the total thermal capacity 

(e.g. for a plate, instead of one whole node with two heat-radiation inputs, one may assign two nodes each 

with just one heat-radiation input, and an internal heat-conduction coupling that can be approximate or 

just a high-enough value to force the same temperature for the two half-plates). 

 

Radiation heat rates are obtained in terms of exitances Mj at each surface i, in the following way. At a 

surface Aj, if there is any radiation heat-rate, ,radiQ , it must be equal to the net radiation input, 

,rad ,in ,outi i iQ     (input radiation power minus output), which can be set in these different forms: 

 Choosing the system interface a little bit inside the surface (when absorption and reflection of 

incoming radiation, have already taken place), net heat input equals absorption minus emission: 

 

  ,rad ,bbi i i i i iQ A E M    (31) 

 

 Choosing the system interface a little bit outside the surface (when absorption and reflection of 

incoming radiation, have not yet taken place), net heat input equals irradiance minus exitance 

(times the area): 

 

  ,radi i i iQ A E M   (32) 

 

 Eliminating the irradiance from equations (31) and (32): 
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 (33) 

 

which may be interpreted from an electrical analogy as ‘a flow ,radiQ  directly proportional to a 

force-difference, MiMi,bb, and inversely proportional to a resistance of value (1i)/(Aii)’. It is 

cumbersome to extrapolate equation (33) to the blackbody limit, since both, 1i and MiMi,bb, 

tend to zero, but the blackbody case is much simpler, as explained below. 

 

Let consider now the interaction among surfaces. The net radiation heat received by surface i from 

surface j is i j j i i jQ      , where we keep to the tradition of naming i jQ   (shortly ijQ ) the ‘heat 
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from j to i’, as a shorthand for ‘the net radiation flux received by surface i from surface j’; notice 

however, that with this naming, it can happen that i jQ  ≠0 with Ti=Tj, contrary to the definition of heat as 

energy flow by temperature difference). From all the enclosure: 

 

     ,rad 1

j i

i ij j i i j j j ji i i ij j i ij i i ij

j j j j j

i ij

M M
Q Q M A F M A F M A F M A F

A F

  


             (34) 

 

where radiative fluxes () have been put in terms of exitances (M) and view factors (Fij), i j i i ijM AF  ), 

and the reciprocity relation applied: 
i ij j jiAF A F . Another way to get equation (34) is: 

   ,radi i i i j ji j i i i ij j i i ij i ij j i

j j j j

Q A E M A F M A M A F M A M F A F M M           . 

 

The equations to solve to get the intermediate variables Mi (and finally the ,radiQ  and Ti) are the energy 

balance at every node, i,dis i,con i,raddidH t W Q Q   , where dHi=micidTi/dt is the enthalpy change rate 

(equal to the internal energy change rate, dEi, in incompressible systems), and the network system can be 

cast as:  
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A FA
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representing three sets of equations (one per each equal sign) to be solved for the three sets of unknowns 

considered: ,radiQ , Mi, and Mi,bb (or Ti, since Mi,bb=Ti
4), and all the other parameters are assumed known 

(areas, emissivities, view factors, and the last three terms in (35) as a function of temperatures).  

 

In the case of blackbody surfaces, Eq. (35) reduces to: 

 

 4 4

,rad ,con ,dis
d

i
i i ij j i i i

j

dH
Q AF T T Q W

t
      (36) 

 

allowing a simple interpretation of the radiative coupling (  4 4

ij ij j iQ R T T  ) as Rij=AiFij. Notice that 

one set of equations and unknown have disappeared from (35) to (36), since for i=1 it is Mi=Mi,bb. 

Remember that, although  ij i ij j iQ A F M M   is termed ‘heat from j to i’, it is not properly heat but net 

radiation exchange. 

 

Another case that admits a simple analytical solution is the heat exchange between two isothermal diffuse 

surfaces (1 and 2) that form an enclosure. The heat flow from surface 1 to surface 2 in general, 
21Q  (often 

written as 
12Q  because the sign is obvious), and the radiative coupling R12 (such that  4 4

12 12 2 1Q R T T 

, do not confuse it with the thermal resistance, defined by  12 2 1 12Q T T R  ), are: 
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 (37) 

 

http://imartinez.etsiae.upm.es/~isidoro/pr4/htm/c13/p311.html
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and, in the particular case where surface 1 is convex at all points, i.e. a convex closed body within a 

container (i.e. F12=1), (37) simplifies to: 
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 (38) 

 

When the enclosure is large (A1<<A2), the heat exchanged by radiation,  4 4

12 1 1 2 1Q A T T   , and 

radiative coupling, R12=1A1, become independent of the thermo-optical properties of the enclosure 

(assumed opaque, of course), and the radiation inside the cavity tends to blackbody radiation 

independently of geometry and properties. This simplest configuration was considered when first 

presenting radiation heat transfer in (3). 

 

Exercise 6. Consider a hemispherical shell of 1 m in diameter, at 500 K, a circular disc of 0.1 m in 

diameter, concentric, in the base plane and at 300 K, and the circular corona at the base that 

completes the closure of the hemisphere, also at 500 K. Assume that there is only heat transfer 

by radiation (no convection and no conduction through the contacts). Find the heat transfer 

received by the disc in the following cases: 

a) Assuming that all surfaces are blackbodies. 

b) Assuming that all surfaces are grey-bodies with =0.8. 

Sol.: The sketch and notation is presented in Fig. E6.  

 
Fig. E6. Disc radiatively heated by a hemispherical dome. 

 

 a) Assuming that all surfaces are blackbodies. 

 In this case that there are no reflections, the disc only sees the dome, and the heat received by 

1 is  4 4

12 2 21 2 1Q A F T T  ; using the reciprocity relation A2F21=A1F12 simplifies the problem, 

since F12=1 because all the energy radiated by surface 1 falls on surface 2. It follows then 

     4 4 2 4 4

12 1 12 2 1 1 2 1/ 4Q A F T T D T T      =(0.12/4)·5.67·10-8·(50043004)=24 W. Notice 

that the heating of the disc does not depend on the temperature of the corona 3 (neither on its 

thermo-optical properties), if surface 2 is a blackbody at a fixed temperature (but the state of 3 

would have an influence on the energy balance of 2).  

 

 b) Assuming that all surfaces are grey-bodies with =0.8. 

 In this case we have a two-surface enclosure (the disc 1 of area D1
2/4, and the rest 2 plus 3 of 

area D2
2+D2

2D1
2)/4), with F1,2+3=1, obtaining for 2 3,1 1,2 3Q Q   : 
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 i.e. the disc receives 19 W from the rest (the hemisphere and the corona). Notice that, in this 

case of small receiving area, the solution is quasi-linearly proportional to 1, and independent 

of the particular geometry of the enclosure. 

 

Example 0. Tilted plate in martian orbit 

Example 1. View factor between equal perpendicular plates separated a distance to the joint 

Example 2. Sunlit plate in geosynchronous orbit 

Example 3. Solar panel with honeycomb structure 

Example 4. White fin normal to a white plate 

Example 5. Sphere with grey hemispherical shield 

Example 6. Two parallel hemi-cylinder bands 

Example 7. Thermal radiation loads on a stratospheric balloon and on its gondola (in Spanish) 

 

Radiation distribution in simple geometries 

The view factor approach used above to compute radiative couplings between isothermal diffuse surfaces, 

only yields global radiant flows, but do not show how the radiation flux distributes on a given surface. 

One might refine the thermal network model, using small isothermal patches, to find a discrete 

distribution of radiant fluxes, but what we present now is some analytical solutions for these radiation 

fields, which may serve to check numerical lumped network codes, or to allow a more sound choice of 

nodes in a practical network, or to gain an insight in radiometry (and photometry).    

Radiation from a point source to a large plate 

Consider the case of a planar surface being irradiated from a point power source (Fig. 11) at a distance H 

and strength 1 (in watts for total radiation, or in lumens for visual radiation; by the way, this is basic for 

the design of artificial light-appliance distribution). The point source has an isotropic intensity I1=1/(4) 

(in W/sr for total radiation, or in lm/sr=cd for visual radiation), and a differential patch, dA2, on the plane, 

at a distance R from the sub-source point (a distance 2 2

12d H R   to the source); the radiation falling 

on dA2 is d12=I1d12, where d12 is the solid angle subtended by dA2 from the source, namely 

d12=dA2/d12
2=dA2cos(2)/d12

2, 2 being the angle between the viewing direction and the perpendicular 

to the plane; finally, the radiation per unit area, E2 (irradiance, in W/m2, for total radiation, or illuminance, 

in lm/m2=lx, for visual radiation), is E2=d12/dA2=(1/(4))H/(H2+R2)3=(1/(4H2))cos3(2), the famous 

cosine-cube law of illumination, represented in Fig. 11. It can be checked that the whole plane gets half of 

the source power, i.e. 
2 1

0
2 d 2E R R 



  . 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise0.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise1.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise2.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise3.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise4.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise5.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise6.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c13/Exercise7.pdf
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Fig. 11. Geometric sketch and irradiance distribution, E2(R), on a plane due to an isotropic point 

source of power 1 at a distance H. 

 

Radiation from a small patch to a large plate 

Consider the radiation from a small source of area dA1 to a planar surface problem. The difference with 

the point-source problem is that radiation from the source patch is not isotropic in the 4 steradians, but 

goes as cos1 in the hemisphere facing dA1. If the emitting patch is parallel to the plane, at a distance H, 

and emits a power d1=M1dA1 diffusively (e.g. as a blackbody , of emittance M1=T1
4), the radiation 

intensity in the direction 1 is dI1=(M1/)dA1=(M1/)dA1cos(1) (it would be uniform if per unit 

projected area in that direction), and the irradiation on the plane dE2=dI1cos2/d12
2=(M1dA1/(H2)cos4(1), 

since 2=1=arcos(H/d12) in this case. Notice that this is a cosine-to-the-fourth law, instead of the cosine-

cube for the point source. It can be checked that now the full radiated energy impinges on the plane, 

2 1
0

d 2 d dE R R 


  , instead of the half, for the point source case.  

 

If the emitting patch is not parallel to the plane, but tilted an angle  so that the normal to the patch 

intersects the plane at the point (xn,0) in the plane coordinates (x,y) centred at the sub-patch point 

(tan()=xn/H), then the distance from the patch to a generic point is d12=(H2+x2+y2)1/2, the distance from 

the patch to the point (xn,0) is d0=(H2+xn
2)1/2, and the distance between the two points rn=((xxn)

2+y2)1/2. 

The angular departure of a point (x,y) to the normal direction from the patch, 1, is given by the cosine 

law of triangles, cos1=(d12
2+d0

2rn
2)/(2d12d0). The radiation intensity in the direction 1 is again 

dI1=(M1/)dA1cos1, and the irradiation at a generic point on the plane 

dE2=dI1cos2/d12
2=(M1dA1Hcos1/)/d12

3, since cos2=H/d12. Substitution yields the explicit form: 

 

 

 

2

1 1
2 22 2 2 2 2

d
d n

n

H xxHM A
E

H x H x y




  
 (39) 

 

which is represented in Fig. 12 for the case xn=H (45º tilting of the patch), and the reference case xn=0 

(which corresponds to the parallel-patch case, solved before). A contour map of irradiance levels on the 

plane (x,y) is shown, to point out the fact that it is no longer axi-symmetric. Notice that the maximum 

irradiance is in between the closest point (the sub-patch point, x=0) and the perpendicular point (the 

intersection with the normal to the patch, x=xn). Finally notice that the source patch only shines on the 

semi-plane x>H2/xn (the other half, x<H2/xn, would be irradiated by the rear side of the patch. 
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Fig. 12. Geometric sketch, and irradiance distribution on a plane, E2, due to a small radiation patch dA1 of 

emittance M1 at a distance H; a contour plot for the latter is plotted for the case xn=H (45º tilted 

patch), and a profile of the irradiances at the line y=0 for both xn=H (45º tilted patch) and .xn=0 

(parallel patch). 

 

Let us now consider the radiation from an infinite planar surface to a small tilted patch of area dA1, with 

tan()=xn/H as before. The distance from a generic point (x,y) to the patch is d12=(H2+x2+y2)1/2, as before, 

and the same for the distance from the point to the patch, d0=(H2+xn
2)1/2, the distance between the generic 

point and the normal point, rn=((xxn)
2+y2)1/2, and the angular departure of a point (x,y) to the normal 

direction from the patch, cos1=(d12
2+d0

2rn
2)/(2d12d0). The radiation intensity emitted by dA2=dxdy in 

the direction 2 is dI2=(M2/)dA2cos2, and its contribution to the irradiation at the patch dA1 is 

dE1=dI2cos1/d12
2=(M2dA2Hcos2/)/d12

3, since cos1=H/d12. Substitution yields the explicit form: 
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d d
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E
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


  
 (40) 

 

which is the same as (39) but with subindices 1 and 2 exchanged, because the second-order differential 

used here is just an artifice to match differentials, since dxdydA2. This equivalence means that the 

irradiation E on a given small patch (1), due to the emittance M of another fixed small patch (2), is the 

same whichever is considered the source, provided both radiate diffusively. 

 

If we know the emittance at every point in the plane, M2(x,y), integration of (40) would gives us the total 

irradiance on dA1 due to a planar distribution of sources. The simplest case is when the plane has uniform 

emittance (i.e. an isothermal plane), in which case, performing the integration (the change 

 21 tany x    makes it easier) yields the result: 
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   (41) 

 

The view factor from the plane (recall that it must be isothermal) to the patch, is the power received on 

the patch, E1dA1, divided by the power emitted by the plane, M2A2, i.e. dF21E1dA1/M2A2, which tends to 

zero for an infinite plate; but the view factor from the tilted patch to the infinite plate, F12, is finite, and 
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can be calculated from the previous one by the reciprocity relation, dA1F12=A2dF21 (see the view factor 

algebra and a compilation of analytical solutions, aside), to yield F12=E1/M2=(1+cos())/2. Of course, this 

view factor can be computed directly from the definition, F12=(cos()cos())dA2/(r2), with 1 being 

the angular position of a patch in 2 from the normal to patch 1, computed by the cosine-rule as 

cos(1)=(r0
2+r2d0

2)(2rr0), with  2

0 1 tanr    being the distance from patch 1 to the normal 

intersecting point in the plane (in units of patch-plane separation), 2 21r x y    being the distance 

from patch 1 to patch 2 (in units of patch-plane separation), and   
22

0 tand x y     being the 

distance from patch 3 to the normal intersecting point of patch 1 in the plane (in units of patch-plane 

separation); cos(2)=1/r is built from the angular position of patch 1 from the normal to patch 2, and 

dA2=dxdy; namely: 
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 (42) 

Radiation from a point source to a sphere, and how it is seen 

Consider the case of a sphere of radius R being irradiated from a point source of radiant power 1 at a 

distance H. The point source has an isotropic intensity I1=1/(4), and a differential patch on the 

sphere,d2A2=Rsin()dd, at a distance Rsin() from the axis (a distance 

     
2

2 2

12 1 cos sind H R R      to the source); the radiation falling on d2A2 is d212=I1d
212, 

where d212 is the solid angle subtended by d2A2 from the source, namely 

d212=d2A2/d12
2=dA2

2cos2/d12
2, 2 being the angle between the viewing direction and the perpendicular 

to the sphere, given by the cosine law of triangles, cos(2)=(d12
2+R2(R+H)2)/(2Rd12); finally, the 

radiation per unit area is E2=d212/d
2A2=(1/(4))cos(2)/d12

2; when E2() is plotted for given data (R,H), 

a bell-shape irradiance distribution is obtained, with a maximum at the closest point, E2(0)=(1/(4))/H2, 

falling to zero axisymmetrically at the tangential point of central angular position t=arcos(R/(R+H)), and 

nil on the sphere shadow. 

 

The case of a long-distance point source is of much interest (think on the Earth or the Moon irradiated by 

the Sun). When H>>R, the collimated beam shines on half of the sphere (t=/2), with a surface 

irradiance proportional to cos (irradiance normal to the beam is uniform, E=/(4d2)). But this is how 

the sphere gets radiant energy (i.e. is ‘illuminated’); to know how the sphere releases radiant energy is 

more complicated. If the sphere was a blackbody, it would absorb all incoming radiation, adjusting its 

temperature field until emission globally matches the energy balance, but the details of the temperature 

field depend on thermal conductivity and dynamics (if the sphere is spinning); e.g., if the Moon was a 

blackbody, it would not show phases (it would not reflect sunrays and would always show black to our 

eyes, in a black background, i.e. invisible except for star occultation), but we might see it with a thermal 

camera as a bright disc over the black background, with the thermal bright slightly decreasing from the 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
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centre to the rim if the Moon were not perfectly conductive to be isothermal, which is not the case, of 

course. But the Moon is neither a blackbody, and it partially reflects solar input in the solar spectral band 

(0.3..3 m) besides emitting in the infrared (3..30 m) because of its surface temperature field. 

 

Let us start by looking at the sphere precisely along the beam direction. If the sphere was a Lambertian 

diffuser (the Moon is not), we would see with our eyes a lit disc darker at the limb (the rim), like in Fig. 

13a. If we looked with a thermal camera, we would see a similar bright disc, darker at the rim too in the 

normal case of non-infinite conductivity and thus non-isothermal surface. Perhaps this result is best 

understood with a tilted plane instead of the spherical geometry; it is clear that a light beam will heat up 

more a normal planar plate than if it were tilted an angle , because a given surface area-patch will get a 

smaller normal irradiance if tilted (E=E0cos); consequently, the fraction of that irradiance reflected by 

that patch will also be smaller, a total of E=E0cos [W/m2] if  is the surface reflectance, with a 

directional intensity distribution following the cosine law if perfectly diffuse, i.e. proportional to the 

cosine of the zenith angle (cos), and, although the radiance or apparent brightness from any viewing 

direction would be the same because it refers to normal area in the viewing direction (dA/cos), the 

original shortage of impinging radiation (E0cos) remains. 

 

 
Fig. 13. a) Reflection of uniform parallel light on a perfect spherical diffuser (polished but Lambertian, 

not specular). b) Reflection on a real rough-surface sphere (with some retro-reflection at the 

rim). Not to be confused with own emission from an isothermal sphere, which would be seen 

(with a thermal camera for T<1000 K) nearly uniformly bright if Lambertian. c) Full moon 

reflectance (deep retro-reflection). 

 

By the way, we have seen that a perfect spherical diffuser (Fig 13a) is seen darker at the periphery (a 

planar perfect diffuser will be uniformly bright whatever its inclination). A perfect emitter at a given 

temperature, whatever its geometry, will look uniformly bright because the cosine-law of emission 

compensates with the area projection. Hence, if the Sun were a perfect emitter, it will be seen uniformly 

bright; but it happens that the Sun is not Lambertian and it is darker near the limb. 

 

Going on with reflexions, if we look at a different phase angle (the angle between the Sun-Moon and 

Moon-Observer lines; let follow with the Moon as our object sphere), we see that only a part of a disc is 

visible to our eyes (in plane geometry, a lune or crescent is a concave-convex area bounded by two arcs, a 

semicircle and a semi-ellipse in our case, whereas a convex-convex area is called a lens). The brightness 

in the crescent is maximum at the subsolar point (or at the closest rim point, if the subsolar point lies at 

the back), and decreases to zero at the terminator (the line separating the illuminated and dark part). Well, 

some brightness can be observed on the dark side of the Moon, corresponding to the second reflection of 

https://en.wikipedia.org/wiki/Limb_darkening
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Sun rays first reflected by the Earth, i.e. the earthshine. When looking at a crescent Moon with a thermal 

camera (i.e. in the far infrared band), you see the full circle bright, a little brighter towards the Sun due to 

its higher temperature. Notice that the Moon (and all planets and moons with regolith material) do not 

show retro-reflection effect in the infrared because reflection in the far infrared is negligible 

(1=10.94=6 % of the infrared exitance), but there are directional effects on the Moon infrared 

emission that produce a similar effect.  

 

Considering again the Moon at full moon phase, and noticing that Moon spins almost 30 times slower 

than the Earth, one may neglect thermal inertia as a first approximation and compute surface temperature 

distribution based on the local energy balance at a patch tilted an angle  to the normal (i.e. located at a 

central angle  in the Moon), Ecos=T4, which, with a frontal albedo =0.10 and emissivity=0.94 

yields a temperature distribution T=(Ecos/())1/4=((10.1)·1370·cos/(0.94·5.67·10-8))1/4= 

390(cos)1/4 K, i.e. 390 K at the centre (the subsolar point), 358 K at =45º (i.e. 71 % off-centre) and 0 K 

at the rim (=0); real values are 397 K, 374 K, and around 300 K, respectively, so that the model is not 

bad, except close to the rim, and on the back side, of course, where real surface temperatures quickly fall 

from some 300 K at the limb to 100 K at subsolar opposition (this ‘high’ value is due to the effect of 

thermal conductivity and thermal capacity (the Moon is spinning; that is why the minimum temperatures, 

down to 20 K in a permanently shadowed crater, are found at the Poles).  

Radiation from a small patch to a sphere 

When a central facing patch is considered instead of the point source, the result is similar: d1=M1dA1, 

dI1=(M1/)dA1=(M1/)dA1cos(1), dE2=dI1cos(2)/d12
2=(M1dA1)cos(1)cos(2)/d12

2; again, when dE2() 

is plotted for given data (R,H), a bell-shape irradiance distribution is obtained, with a maximum at the 

closest point, dE2(0)=(M1dA1/)/H2, falling to zero at the tangential point more quickly than in the case of 

the point source. 

 

If the emitting patch is not parallel to the sphere (Fig. 14), but tilted an angle , two cases must be 

considered, depending on the relative position of the sphere and the plane passing by the patch, what is 

delimited by the semi-angle subtended by the tangent to the sphere from the patch centre, 

t=arcsin(R/(R+H)): if </2t, the whole projected sphere is seen by the patch; if >/2t, no part of 

the projected sphere is seen by the patch; and if /2t<</2t, only a part of the projected sphere is 

seen by the patch. Let us solve the first case, i.e. 0<</2arcsin(R/(R+H)). The irradiation on a small 

spherical patch centred at the point (x,y,z), with 2 2 2z R x y   , is again 

dE2=dI1cos(2)/d12
2=(M1dA1)cos(1)cos(2)/d12

2, but now the parameters are: 
2 2 2

12 ( )d x y R H z     , cos(1)=(d12
2+d0

2d1
2)/(2d12d0), d0=(R+H)/cos(), 

    
2 2 2

1 tand x H R y z     , and  2 2

2 1sgn( )arcsinx x y R      ; to better grasp this 

cumbersome (although explicit) solution, Fig. 14 presents a contour plot of the irradiance distribution in 

the sphere, for the limit case where =/2t when H=R.  
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Fig. 14. Geometric sketch, and irradiance distribution, dE2, on a sphere of radius R, due to a small 

radiation patch dA1 of emittance M1 at a distance H; a contour plot for the latter is plotted for the 

limit case =/2t, with t=arcsin(R/(R+H)) (i.e. 60º tilted patch, with 30º tangent angle, for 

H=R), and a profile of the irradiances at the central line y=0 for both =1.05 rad (60º tilted patch) 

and .=0 (parallel patch). 

Radiation from a sphere to a small patch 

Consider the radiation from a large spherical surface of radius R to a small tilted patch of area dA1, 

separated a distance H from the surface. Again, we only consider the case of an isothermal sphere (i.e. 

uniform emittance), and proceed directly to compute the power received by the patch dA1. Again, two 

cases must be considered, delimited by the semi-angle subtended by the tangent to the sphere from the 

patch centre, t=arcsin(R/(R+H)): 

 Case A, the plane containing the patch dA1 does not cut the sphere, i.e. the patch tilting, , is 

small, with </2t. In this case, the view factor can be found geometrically by the projections 

method (it is the area of the projection on the patch-plane of the projection of the radiating 

sphere on the unit hemisphere centred at dA1, and divided by ): 
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 Case B, the plane containing the patch dA1 cuts the sphere, i.e. the patch tilting, , is large, with 

/2t<</2t. In this case, the view factor is (Chun and Naragui, 1981): 
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 (44) 

 

 with  22 tanx h h    and 21y x  .  
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Radiation from a disc to a small patch 

Consider the radiation from a disc of radius R to a small facing patch of area dA2, axially located at a 

distance H (Fig. 15). Again, we only consider the case of an isothermal disc, i.e. uniform disc emittance, 

M1 (M1=T4 if a blackbody). The power received by the patch dA1 is d12=M1A1dF12=M1dA2F21= 

M1dA2R
2/(R2+H2), where the view factor from patch to disc, F21, has been obtained from compilations. 

 

 
Fig. 15. Radiation from a disc of area A1=R2 to a small frontal patch of area dA2. Elementary area 

dA1=2rdr tilted an angle  to the viewing direction. 

 

Irradiance at the patch is E2=d12/dA2=M1R
2/(R2+H2)=L1R

2/(R2+H2)=A1L1/(R
2+H2), where disc radiance, 

L1, has been introduced, because we want now to deduce it directly without recourse to view factor 

compilations. Consider a differential ring at a radial position r on the disc, of area dA1=2rdr. From the 

definition of radiance, L1≡d212/(dA1d12cos1), where 1 is the angle the direction dA1→dA2 forms with 

the normal to dA1, and d12 the solid angle subtended, which is the projected area divided by the square 

of the distance, i.e. d12=dA2cos2/(r
2+H2), what yields: 
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i.e., we have recovered the previous result, and we see that, if the disc source is far enough, like our Sun, 

the irradiance we get is simply the radiance times the solid angle subtended. 

Summary of radiation laws 

Laws of radiation propagation:  

 Straight propagation. Radiation propagates in straigh line at the constant speed of light (under 

vacuum; if propagation is through media of refractive index n, then the speed is c/n and direction 

may change by refraction). 

 Inverse square law of irradiance from a point source. Radiation from a finite source in non-

absorbing media decays with the inverse of the distance square, due to energy conservation 

through the englobing spheres, i.e. E=E0(d0/d)2. 

 Cosine law of irradiance on an inclined plate from a parallel beam. For a given collimated 

radiation of normal irradiance E0, irradiance upon a tilted surface is E=E0cos, where is the 

azimuthal angle of incident radiation. 

 Cosine cube law of irradiance at a horizontal plate from a point source: 

Ehoriz=Enormalcos=Emaxcos3=(I/H2)cos3. 
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Laws of radiation emission:  

 Cosine law for exitance. The power emitted by a blackbody patch (and by extension the power 

emiited and the power reflected by a Lambertian surface patch), decreases from the normal 

direction by Lambert’s law, M=M0cos.  

 Planck law of blackbody emission: M=A/{5[exp(B/(T))1]}, with A=0.374·10-15 W·m2 and 

B=0.0144 m·K. 

 Stefan-Boltzmann law of blackbody emission: M=T4, with =5.67·10-8 W/(m2·K4). 

 Wien displacement law of blackbody emission: Mmax=C/T with C=0.00290 m·K. In terms of 

frequency, Mmax=C’T with C’=58.8·109 Hz/K. 

 Kirchhoff’s law. Detailed thermodynamic equilibrium at a given temperature T of radiation 

exchange at an opaque surface, implies that emissivity at a given wavelength  in a given 

direction (), must be equal to absorptance of radiation of the same wavelength coming from the 

same direction, =. With the grey surface model, IR=IR. 

 

Laws of view factor algebra:  

 Bounding. View factors are bounded to 0Fij≤1 by definition (the view factor Fij is the fraction 

of energy exiting surface i, that impinges on surface j). 

 Closeness. Summing up all view factors from a given surface in an enclosure, including the 

possible self-view factor for concave surfaces, 1ij

j

F  , because the same amount of radiation 

emitted by a surface must be absorbed. 

 Reciprocity. Noticing from the above equation that dAidFij=dAjdFji=(cosicosj/(rij
2))dAidAj, it 

is deduced that 
i ij j jiAF A F . 

 Distribution. When two target surfaces are considered at once, 
,i j k ij ikF F F   , based on area 

additivity in the definition. 

 Composition. Based on reciprocity and distribution, when two source areas are considered 

together,    ,i j k i ik j jk i jF A F A F A A    . 

 

Back to Spacecraft Thermal Control 

Back to Heat transfer 

Back to Thermodynamics 

 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Control.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/index.htm
http://imartinez.etsiae.upm.es/~isidoro/bk3/index.htm

