> | restart;#"m5_p37" |
En una tubería de 1 cm2 de sección hay una válvula por la que entra argón a 10 MPa, 210 K y 10 m/s, saliendo a 5 MPa. Calcular el gasto másico, y la temperatura y velocidad de salida.
Datos:
> | read"../therm_eq.m":read"../therm_proc.m":with(therm_proc): |
> | su:="Ar":dat:=[A=1e-4*m_^2,p1=10e6*Pa_,T1=210*K_,v1=10*m_/s_,p2=5e6*Pa_]; |
![]() |
Esquema:
> | ![]() |
> | ![]() |
Eqs. const.:
> | eqETg:=subs(eq1_11,eq1_12);eqEE:=eq1_16;gdat:=get_gas_data(su):dat:=op(dat),Const,gdat,SI2,SI1:Tcr=subs(dat,T[cr]);pcr=subs(dat,p[cr]);M=subs(dat,M); |
![]() |
![]() |
![]() |
![]() |
![]() |
a) Calcular el gasto másico, y la temperatura y velocidad de salida.
> | ### WARNING: allvalues now returns a list of symbolic values instead of a sequence of lists of numeric values
eqBM_:=p1*v1*A/(R*T1)=p2*v2*A2/(R*T2);eqBE_:=c[p]*T1+v1^2/2=c[p]*T2+v2^2/2;sol1:=allvalues(subs(A1=A,A2=A,dat,SI0,solve({eqBM_,eqBE_},{v2,T2})))[1];eqBM__:=subs(A1=A,A2=A,dat,SI0,eqBM_):'eqBM'=evalf(%,2);eqBE__:=subs(dat,SI0,eqBE_):'eqBE'=evalf(%,2); |
![]() |
![]() |
![]() |
![]() |
![]() |
Modelo de estados correspondientes
> | eqBM_:=p1*v1*A/(Z1*R*T1)=p2*v2*A2/(Z2*R*T2);eqBE_:=c[p]*T1-hcc1+v1^2/2=c[p]*T2-hcc2+v2^2/2; |
![]() |
![]() |
> | pR1:=subs(dat,p1/p[cr]):'pR1'=evalf(%,2);TR1:=subs(dat,T1/T[cr]):'TR1'=evalf(%,2);Z1:=0.80;hcc1:=10*(J_/(mol_*K_))*subs(dat,T[cr]/M);pR2:=subs(dat,p2/p[cr]):'pR2'=evalf(%,2); |
![]() |
![]() |
![]() |
![]() |
![]() |
> | eqBM__:=subs(A1=A,A2=A,dat,SI0,eqBM_):'eqBM'=evalf(%,2);eqBE__:=subs(dat,SI0,eqBE_):'eqBE'=evalf(%,2); |
![]() |
![]() |
> | T2_:=subs(dat,T1);TR2:=subs(dat,T2_/T[cr]);Z2:=0.9;hcc2:=5*(J_/(mol_*K_))*subs(dat,T[cr]/M);sol1:=fsolve(subs(SI0,{eqBM__,eqBE__}),{v2,T2},v2=0..100); |
![]() |
![]() |
![]() |
![]() |
![]() |
> | T2_:=subs(sol1,T2)*K_;TR2:=subs(dat,T2_/T[cr]);Z2:=0.75;hcc2:=8*(J_/(mol_*K_))*subs(dat,T[cr]/M);sol1:=fsolve(subs(SI0,{eqBM__,eqBE__}),{v2,T2},v2=0..100); |
![]() |
![]() |
![]() |
![]() |
![]() |
> | T2_:=subs(sol1,T2)*K_;TR2:=subs(dat,T2_/T[cr]);Z2:=0.83;hcc2:=6*(J_/(mol_*K_))*subs(dat,T[cr]/M);sol1:=fsolve(subs(SI0,{eqBM__,eqBE__}),{v2,T2},v2=0..100); |
![]() |
![]() |
![]() |
![]() |
![]() |
> | T2_:=subs(sol1,T2)*K_;TR2:=subs(dat,T2_/T[cr]);Z2:=0.80;hcc2:=7*(J_/(mol_*K_))*subs(dat,T[cr]/M);sol1:=fsolve(subs(SI0,{eqBM__,eqBE__}),{v2,T2},v2=0..100); |
![]() |
![]() |
![]() |
![]() |
![]() |
> | 'T2'=evalf(subs(sol1,T2)*K_);'v2'=evalf(subs(sol1,v2)*m_/s_); |
![]() |
![]() |
> |