

PROPERTIES OF GASES

© 1995-2024 by Isidoro Martínez

(Function values at 100 kPa and 288 K or the normal boiling temperature if greater.)

		Molar	Boiling	Critical	Critical	Critical	Pitzer's	Thermal	Thermal	Dynamic
		mass	temp.	temp	pressure	compressibility	acentric	capacity ^b	conductivity ^c	viscosity ^d
Substance	Formula				-	factor ^a	factor		-	
		M	T_b	T_{cr}	p_{cr}			C_p	k	$\mu \cdot 10^6$
		kg/mol	K	K	MPa	Zcr	ω	J/(kg·K)	W/(m·K)	Pa∙s
Acetone	C ₃ H ₆ O	0.058	329.2							
Acetylene	C_2H_2	0.026	189.5 ^f	309	6.20	0.271	0.184	1580	0.019	9.3
Air	79%N ₂ + 21%O ₂	0.029	82 ^e	132 ^g	3.75 ^g	0.28 ^g	0.035	1004	0.024	18.1
Ammonia	NH3	0.017	239.8	406	11.30	0.242	0.250	2200	0.022	9.3
Argon	Ar	0.040	87.4	151	4.86	0.291	0	523	0.018	21.0
Benzene	C_6H_6	0.078	353.3	563	4.92	0.271	0.212	1300	0.007	7.0
1,3-Butadiene	C_4H_6	0.054	268.5	425	4.33	0.270	0.193	1510		
n-Butane	$C_{4}H_{10}$	0.058	272.6	425	3.80	0.274	0.193	1580	0.015	7.0
iso-Butane	$C_{4}H_{10}$	0.058	261.5	408	3.64	0.280	0.176	1580	0.015	9.0
Carbon dioxide	CO_2	0.044	194.7 ^f	304	7.38	0.274	0.225	840 ^h	0.016	14,4
Carbon monoxide	CO	0.028	81.7	133	3.50	0.295	0.049	1100	0.023	17.0
Carbon tetrachloride	CCl ₄	0.154	349.7	556	4.56	0.272	0.194	862	0.017	16.0
Cyclohexane	C_6H_6	0.084	353.9	554	4.07	0.273	0.212			
n-Decane	$C_{10}H_{22}$	0.142	447.3	619	2.12	0.247	0.490	1680		
n-Dodecane	$C_{12}H_{26}$	0.170	489.4	659	1.80	0.240	0.562	1690		
DME (dimethyl ether)	C_2H_6O	0.046	250.6	400	5.37	0.271	0.274	1430		
Ethane	C_2H_6	0.030	184.6	305	4.88	0.285	0.100	1700	0.020	11.0
Ethanol	C_2H_6O	0.046	351.5	516	6.39	0.248	0.635	1520	0.013	14.2
Ether (diethyl ether)	$C_4H_{10}O$	0.074	307.6	467	3.61	0.260	0.281	1600	0.015	7.5
ETBE (ethyl tert-butyl ether)		0.102	345	517	3.11	0.274	0.298	1550		
Ethylene	C_2H_4	0.028	169.5	283	5.12	0.276	0.085	1470	0.018	9.6
	C_2H_4 $C_2H_6O_2$	0.062					1.137			2.0
	He	0.002					-0.387			19.0
-	He	0.004					-0.460		0.142	17.0
n-Heptane	C_7H_{16}	0.100		540					0.013	6.5
n-Hexane	$C_{6}H_{14}$	0.086								
Hydrazine	N_2H_4	0.032		653					0.011	0.5
	H_2	0.002		33					0.168	8.4
	D_2	0.002								
	H_2O_2	0.034		728 ⁱ		0.247	0.10	14200		12
	Hg	0.034	630					1270		
Methane	CH ₄	0.016		191	4.60		0.010	2180	0.031	10.3
Methanol	CH4 CH4O		338.1	513						
MTBE (methyl tert-butyl										2.0
ether)	$C_5H_{12}O$	0.088	328	497	3.43	0.273	0.267	1500		
(1101 <i>)</i>										I]

				T						
Neon	Ne	0.020	26.2	44	2.70		0		0.046	30.0
Nitrogen	N_2	0.028	77.4	126	3.39	0.290	0.038	1040	0.024	16.6
Nitrogen dioxide ^k	NO_2	0.046	294.4	431	10.1	0.233		800	0.017	130
Nitrogen monoxide	NO	0.030	121.2	180	6.55	0.250	0.607	996	0.024	29.4
di-Nitrogen oxide ¹	N_2O	0.044	184.7	310	7.25	0.272	0.160	864	0.015	13.6
n-Octane	$C_{8}H_{18}$	0.114	399	569	2.49	0.259	0.394	1700	0.020	7.5
iso-Octane	$C_{8}H_{18}$	0.114	372	544	2.59	0.267		1650		
Ozone	O ₃	0.048	161.4	268	6.78	0.272				
Oxygen	O_2	0.032	90.2	155	5.08	0.288	0.021	913	0.024	19.1
iso-Pentane	$C_{5}H_{12}$	0.072	301.3	461	3.33	0.268	0.227	1680	0.015	11.7
n-Pentane	$C_{5}H_{12}$	0.072	309.2	470	3.38	0.262	0.251	1680	0.015	11.7
Phenol	C ₆ H ₆ O	0.094	455	694	6.13	0.243	0.426			
Propane	C_3H_8	0.044	231.1	370	4.26	0.281	0.152	1570	0.015	7.4
iso-Propanol	C ₃ H ₈ O	0.060	355.4	508	4.76	0.248	0.669	1540		
Propylene (propene)	C ₃ H ₆	0.042	225.4	365	4.62	0.275	0.148	1460	0.014	8.1
Propylene glycol	$C_3H_8O_2$	0.076	461.3	626	6.10	0.280	1.107			
R12 (CFC-12) (dichlorodifluoromethane)		0.121	243.0	385	4.14	0.280	0.179	573	0.008	12.5
R134a (HFC-134a) (tetrafluoroethane)	CF ₃ CH ₂ F	0.102	246.6	374	4.07	0.258	0.330	840	0.014	12.2
R410A ^m	n.a.	0.073	221.8	345	4.90	0.271	0.296	820		
Sulfur dioxide	SO_2	0.064	263.2	430	7.87	0.264	0.251	607	0.009	11.6
Sulfur hexafluoride ⁿ	SF_6	0.146	204.9 ^f	319	3.76	0.360	0.210	598	0.12	16.0
Toluene	C_7H_8	0.092	383.7	592	4.13	0.284	0.266			
Tetradecafluorohexane	$C_{6}F_{14}$	0.338	329	449	1.83					
Uranium hexafluoride ^o	UF ₆	0.352	329 ^f	503	4.60	0.282	0.092	370	0.009	20
Water (steam) ^p	H ₂ O	0.018	372.8	647.3	22.12	0.229	0.344	2050 ^p	0.025	12.1
Xenon	Xe	0.131	165.0	289.8	5.84	0.291	0	158	0.006	22.5

^aCritical molar volumes can be obtained from $v_{cr}=Z_{cr}RT_{cr}/p_{cr}$, and critical densities from $\rho_{cr}=M/v_{cr}$ (e.g. for acetone $v_{cr}=209\cdot10^{-6}$ m³/mol and $\rho_{cr}=351$ kg/m³.

^bThermal capacities of monoatomic gases do not change with temperature, but for polyatomic gases it increases more the more atoms has the molecule.

^c Thermal conductivity of gases increases with the square root of temperature, decreases with the square root of molar mass, and do not change with pressure. Thermal diffusivity $a \equiv k/(\rho c_p)$. According to simple generalised transport theory in gases, thermal diffusivity, mass diffusivity and kinematic viscosity of gases have the same values.

^d Dynamic viscosity of gases increases with the square root of temperature, and do not change with pressure. Kinematic viscosity $v \equiv \mu / \rho$.

^e Bubble point.

^f Sublimation point.

^g Pseudo-critical point (Kay's model).

^h Most gas properties vary a lot near the critical point, what may be here the case; e.g., for CO₂ gas at 288 K and 100 kPa, thermal capacity at constant pressure is c_p =840 J/(kg·K), growing at constant *T*=288 K from c_p =833 J/(kg·K) at very low pressure, to c_p =3010 J/(kg·K) at the saturation pressure (5063 kPa). Thermal capacity in the ideal gas limit (p→0) varies almost linearly (e.g. c_p =753 J/(kg·K) at the triple-point temperature, c_p =850 J/(kg·K) at the critical-point temperature).

ⁱ Data for $\underline{H_2O_2}$ pure ($\underline{H_2O_2}$ is most used in aqueous solutions). Critical temperature extrapolated from corresponding states theory, because $\underline{H_2O_2}$ decomposes violently at such high temperatures).

^j Mercury is obtained by oxidation of cinnabar at some 600 °C and vapour condensation. Mercury vapour should not exceed 0.1 mg/m³ in breathing air (notice that saturated air at 20 °C already contains more than that limit.

^k Nitrogen dioxide, NO₂, is a very toxic brown gas at normal conditions (but readily condensable, $T_b=21.3$ °C). All nitrogen oxides slowly decomposing to nitrogen and oxygen, making it difficult to keep them in pure state; besides, NO₂ is paramagnetic, but readily dimersies to dinitrogen tetroxide, N₂O₄, a diamagnetic pale-

yellow or colourless gas with double density than NO₂ (e.g. when heating from above an ampoule containing NO₂, some N₂O₄ is formed at the top $(2NO_2(g)=N_2O_4(g)+57 \text{ kJ/mol})$, which can be seen sinking to the bottom because of buoyancy). The NO₂/N₂O₄ equilibrium depends on temperature, NO₂ being favoured at high temperatures and N₂O₄ at low temperatures; when condensing (at 21.3 °C at 100 kPa), most of the liquid is N₂O₄ which is colourless or pale brownish, and if solidified (at -11.2 °C) a white solid appears. The liquid N₂O₄ is a hypergolic propellant that spontaneously reacts upon contact with various forms of hydrazine, which makes the pair a popular bipropellant for spacecraft rockets.

- ¹ Di-nitrogen oxide, N₂O, also known as nitrous oxide (NO is nitric oxide), or nitrogen hemi-oxide, or nitrogen protoxide, or laughing gas, is used in respiratory anaesthesia since the pioneering trials of Sir Humphrey Davy in 1789 shortly after its discovery by J. Prietsley in 1772, as a non-flammable non-ozone-depleting propellant in aerosol cans, and as a fuel additive to enhance combustion (it liberates oxygen; if added as compressed liquid in the intake manifold, it greatly increases fuel load). It has a global warming potential (GWP) of 300 times that of CO₂, being the third contributor to anthropogenic GWP, after CO₂ and CH₄.
- ^m R410A is a near-azeotropic mixture of R32 (difluoromethane, CH₂F₂) and R125 (pentafluoroethane, CHF₂CF₃), 50/50 by weight (70/30 molar), which can be approximated as a pure substance. The critical point of a binary mixture is defined as the point where $\partial^2 g/\partial x^2$ and $\partial^3 g/\partial x^3$ are simultaneously zero, where g is the Gibbs energy and x is the mole fraction of a component.
- ⁿ Sulfur hexafluoride is a synthetic gas used as insulator for electrical equipment (breakdown potential three times larger than air, and as a fluorine source for edging in the electronics industry. It is a non-flammable, non-toxic gas, which decomposes at 750 K; it has low water solubility, and a very large IR absortance (it is the most potent greenhouse gas, GWP=22 000), what has been used as a trace gas for gas-leakage detection.
- ^o Uranium hexafluoride, perhaps the heaviest simple molecule, is the only uranium compound presently used in industrially enrichment of U-235, both on gas diffusion and on gas centrifugation processes. At room conditions, it is a white crystalline solid with a high vapour pressure (p_v =11 kPa at 20 °C).
- ^p The boiling point of water at 100 kPa is $T_b=372.75\pm0.02$ K (99.60±0.02 °C), whereas at 101.325 kPa (1 atm) it is 373.12±0.02 K (99.97±0.02 °C). Steam thermal capacity varies appreciably with T and p: at $p\rightarrow0$, $c_p(T)$ grows almost linearly from 1890 J/(kg·K) at 100 °C to 2130 J/(kg·K) at 500 °C, but a high-p it has a minimum (e.g. at 200 kPa, $c_p=2180$ J/(kg·K) as saturated vapour at 120 °C, drops to a minimum $c_p=2010$ J/(kg·K) at 230 °C, and grows to match $c_p(T,p\rightarrow0)$ at high-T, say $c_p=2130$ J/(kg·K) at 500 °C). For the perfect gas model in adiabatic expansion of steam, a value of $\gamma=c_p/c_v=1.33$ is recommended.