

FUEL DATA FOR COMBUSTION WITH AIR

© 1995-2024 by Isidoro Martínez

		Density	Theoretical air/fuel ratio	Higher Heating	Maximum adiabatic	Flash point &Autoignition	Ignition limits ^b	Laminar deflagration
Fuel	Formula (state)	[kg/m ³]		Value [MJ/kg]	combustion <i>T</i> [K]	temperature ^a [K]		speed (max.) [m/s]
Acetylene	C ₂ H ₂ (g)	1.1	$11.9 \text{ m}^3/\text{m}^3$	48	2500^{*}	<180, 600	2.5100	1.5
Benzene	$C_{6}H_{6}(l)$	880	13.3 kg/kg	42.3	2400	262, 840	1.57.5	1.1
Bio-diesel	$C_{17}H_{32}O_2(1)$ esters	880	12.4 kg/kg	40	-	420, -		
Bio-petrol	C ₆ H ₁₄ O(l) Ethyl Tert. Butyl Ether	750	12.2 kg/kg	36	-	-		
n-Butane	C ₄ H ₁₀ (g)	2.4	$31 \text{ m}^3/\text{m}^3$	49.5	2250	210, 670	1.59.3	0.45
iso-Butane	C ₄ H ₁₀ (g)	2.4	$31 \text{ m}^3/\text{m}^3$	49.5	2250	190, 710	1.68.4	0.45
Carbon (graphite)	C(s)	2250	11.5 kg/kg	33		600, 670		
Carbon monoxide	CO(g)	1.2	$2.4 \text{ m}^3/\text{m}^3$	10	2400	-, 900	1275	0.20
Coal (dry, mean)	85%C5%H5%O5%M(s) ^c	13001400	10 kg/kg	31	2200	550, 600		
Diesel or Gas-oil	87%C13%H(l) ^d	820860	14.5 kg/kg	47		330, 480	0.68	
DME	C ₂ H ₆ O(g) (dimethyl ether)	1.8	$14.3 \text{ m}^3/\text{m}^3$	30		232, 600	3.420	0.40
ETBE	$C_6H_{14}O(l)$ (ethyl tert-butyl ether)	770	12.2 kg/kg	43		248, 580	1.410	
Ethane	$C_2H_6(g)$	1.2	$16.7 \text{ m}^3/\text{m}^3$	51.9	2100	140, 800	3.015	0.40
Ethanol	C ₂ H ₆ O(1)	790	9.0 kg/kg	29.7	2200	285, 630	3.321	0.80
Ether	C ₄ H ₁₀ O(l) (diethyl ether)	715	11.2 kg/kg	37.2		230, 440	1.837	
Fuel-oil	84%C10%H3%S1%N2%H2 O(l) ^e	850990	15 kg/kg	44	2200	320, 480	0.75	
Gasoline	85%C15%H(l) ^f	730760	14.7 kg/kg	48	2200	230, 650	1.38	0.35
n-Hexadecane	C ₁₆ H ₃₄ (l)	773	14.9 kg/kg	47.3	2200	400, 475	0.54.7	
n-Heptane	C7H16(l)	685	15.2 kg/kg	48.1	2200	269, 560	1.16.7	0.40

Hydrogen	H ₂ (g)	0.08	$2.4 \text{ m}^3/\text{m}^3$	142	2400	-, 850	4.075	3.5
Kerosene Jet A-	-1 85%C15%H(l) ^g	780840	15 kg/kg	47	2300	330, 500	0.76	0.20
Methane	CH ₄ (g)	0.67	$9.5 \text{ m}^3/\text{m}^3$	55.5	2200	85, 850	4.516	0.45
Methanol	CH ₄ O(l)	790	6.5 kg/kg	22.7	2150	285, 680	6.037	0.50
Natural gas	$CH_4(g)^h$	0.680.70	$9.5 \text{ m}^3/\text{m}^3$	54	2250	-, 850	5.315	0.45
n-Octane	$C_8H_{18}(l)$	703	15 kg/kg	47.9	2300	286, 500	16	0.40
iso-Octane	$C_8H_{18}(1)^i$	690	15 kg/kg	47.9	2300	261, 690	16	0.40
Propane	$C_{3}H_{8}(g)$	1.8	$23.8 \text{ m}^3/\text{m}^3$	50.0	2250	170, 750	2.09.5	0.45
Propylene	$C_{3}H_{6}(g)$	1.8	$21.4 \text{ m}^3/\text{m}^3$	48.9	_		2.411	-
Wood (dry, mean)	50%C5%H45%O(s) ^j	5001000	5.6 kg/kg	20	2100	550, 700		-

All data for combustion with air, at 298 K and 100 kPa. Additional data in Wiki.

*Maximum adiabatic combustion temperature for the oxyacetylene torch 3400 K.

^aFlash point: minimum temperature for spark ignition near the condensed phase. Autoignition: minimum temperature for self ignition (without spark).

^b% by volume of gaseous fuel in the mixture with air.

^c% by weight, dry bituminous coal; C refers to total carbon content (fixed plus volatile matter), M refers to inert matter.

^d% by weight; diesel or gas-oil is a distilled mixture with M=0.17..0.20 kg/mol, T_b =470..530 K (10% and 90% boiled), $p_v(38 \text{ °C})$ =0.7 kPa, $v < 4 \times 10^{-6} \text{ m}^2/\text{s}$ at 55 °C (the flash point of diesel), 50..55 cetane number, and sulfur content <500 ppm, that may be approximated by C₁₂H₂₆ (n-Dodecane). Cetane is n-hexadecane, C₁₆H₃₄. As for most hydrocarbons, the solubility in water is negligible, and it may be carcinogen.

 $^{\circ}$ by weight; fuel-oils are mixtures of residues and heavy fraction distillates (and maybe used and waste oils), with sulfur content <0.5%, and may be approximated by C₁₄H₂₆. Pour points are usually below 0 $^{\circ}$ C for distillates and below 20 $^{\circ}$ C for residuals, but they are heated for handling.

^f% by weight; gasoline is a distilled mixture with M=0.10..0.12 kg/mol, T_b =300..440 K (10% and 90% boiled), p_v (38 °C)=60 kPa for the summer blend and p_v (40 °C)=90 kPa for the winter blend, 90..100 motor octane number, and sulfur content <300 ppm, that may be approximated by C₇H₁₇ or C₈H₁₈ (iso-octane), except for the vapour pressure. Composition differences yield a wide scatter in property values; e.g. the flash point may range from -230 K to 240 K, autoignition temperature from 550 K to 750 K.

^g% by weight; kerosene (or kerosene) is a distilled mixture with T_b =450..600 K (10% and 90% boiled), T_f =-40 °C, ν =8×10⁻⁶ m²/s at -20 °C, that may be approximated by n-dodecane (C₁₂H₂₆) or 1-dodecene (C₁₂H₂₄). Commercial (Jet A-1, Jet A, and Jet B) and military (JP-4, JP-5, JP-8...) jet propulsion fuels, are basically mixtures of kerosene and gasoline (half-&-half for JP-4, 99.5% kerosene for JP-5 and JP-8, 100% kerosene for Jet A-1), plus special additives (1..2%): corrosion inhibitor, anti-icing, and anti-static compounds. Jet A-1 is the international jet fuel with T_f =-50 °C (-47 °C as a limit); Jet A (with T_f =-40 °C) is a low-grade Jet A-1 only and mostly used in USA; and Jet B (T_f <-50 °C), the commercial name of JP-4, is only used in very cold climates. They all have a lower heating value of 42.8..43.6 MJ/kg. Minimum flash point is 60 °C for JP-5, 38 °C for Jet A-1 and JP-8 (Jet A-1 typical value is 50 °C, with a vapour pressure at this point of 1.5 kPa; 1 kPa at 38 °C), and -20 °C for JP-4. Typical density at 15 °C is 810 kg/m³ for Jet A-1, and 760 kg/m³ for Jet B.

^hNatural gas is a mixture with some 90% methane, M=0.017..0.019 kg/mol, $T_b=110..120$ K (10% and 90% boiled) and 120 motor octane number.

ⁱIsooctane or trimethylpentane, T_f =166 K, T_b =372 K, c=2200 J/(kg×K), Motor Octane Number MON=100.

^j% by weight; wood is basically cellulose, a long polysaccharide $(C_6H_{10}O_5)_n$ with *n*=5000..10000 and *M*=500..10000 kg/mol.