
 
COMBINED BRAYTON-RANKINE CYCLE 

 

Statement 

It has been read that a Brayton-Rankine combined power plant produces 9 MW with the gas turbine 

and 2 MW with the steam turbine, with gases entering the gas turbine at 1.5 MPa and 1200 ºC, and 

steam entering the steam turbine at 4 MPa and 400 °C. Find: 

a) Sketch of the components flow diagram, and processes in the T-s diagram. 

b) Mass flow rate of steam involved. 

c) Mass flow rate of air needed. 

d) Is it required to burn additional fuel in the heat-recovery boiler? 

En una publicación se lee que una central de ciclo combinado Brayton-Rankine genera 9 MW con la 

turbina de gas y 2 MW con la de vapor, entrando los gases a la turbina de gas a 1,5 MPa y 1200 ºC, y a 

la turbina de vapor a 4 MPa y 400 ºC. Se pide: 

a) Esquema de componentes y diagrama T-s de los procesos. 

b) Gasto másico de vapor producido. 

c) Gasto másico de aire. 

d) ¿Es necesario quemar combustible adicional en la caldera? 

 

Solution.  

a) Sketch of the components flow diagram, and processes in the T-s diagram. 

 

 
Fig. 1. Sketch of Brayton-Rankine combined cycle, and their T-s processes. 

 

b) Mass flow rate of steam involved. 

We start assuming isentropic expansion, since there is no specific data on that. We further 

assume that expansion in the steam turbine is down to the limit of ambient temperature, which 

http://imartinez.etsiae.upm.es/~isidoro/pr4/htm/c17/p381.html


we take as T0=288 K by lack of specific data, in spite of the fact that, in normal practice, a few 

degrees above the maximum year-around environmental temperature should be consider, to 

guaranty all-year operation with a reasonable temperature jump across the condenser, i.e. at least 

some T1>300 K (and a vapour pressure of p1>3.6 kPa, instead of p1>1.7 kPa corresponding to 

T1>288 K).  

Using Antoine's fitting (or looking up in the steam tables): 
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The mass flow rate of steam involved, STm , is obtained from the work delivered by the steam 

turbine. Neglecting the work consumed by the pumps, the equation is  3 4ST ST ST
W m h h  . The 

enthalpy value of the steam at the turbine inlet, taking as reference hR=0 for liquid water at its 

triple point (TR=273 K, pR=0.6 kPa), as usual, can be approximated with the perfect-substance 

model by h3=hR+hLV,R+cp,v(T3TR)=0+2500+1.9(4000)=3260 kJ/kg, what can be compared 

with the most exact value (NIST) of h3=3213 kJ/kg. Enthalpy at turbine outlet might be found 

graphically in a Mollier diagram, by intersection of the vertical from point 3, s3=6.77 kJ/(kg·K) 

with the isobar of p4=p1=1.7 kPa, obtaining h4=1950 kJ/kg. However, to avoid graphical 

solutions, we apply the perfect-substance model, which, although more lengthy, it is easily 

programmable: first the vapour mass fraction at 4 is found from s4=s3=s4L(1x4)+s4Vx4, with 

s3=sR+hLV,R/TR+cp,vln(T3TR)Rln(p3pR) = 0+2500/273+1.9ln(673/273)0.46ln(4000/0.6) = 6.77 

kJ/(kg·K), s4L=sR+cp,Lln(T4TR) = 0+4.2ln(288/273)= 0.22 kJ/(kg·K), and 

s4V=sR+hLV,R/TR+cp,vln(T4TR)Rln(p4pR)= 0+2500/273+1.9ln(288/273)0.46ln(1.7/0.6)= 8.74 

kJ/(kg·K); i.e. x4=(s4s4L)/(s4Vs4L)=(6.770.22)/(8.740.22)=0.77, too small a value for 

practical steam turbines (where only values greater than x4=0.85 or so are tolerated to avoid 

mechanical degradation of the blades by high-speed droplet impingement). Finally 

h4=h4L(1x4)+h4Vx4, with h4L=hR+cp,L(T4TR)=0+4.2(288-273)=63 kJ/kg and 

h4V=hR+hLV,R+cp,V(T4TR)=0+2500+1.9(288-273)=2530 kJ/kg, so that h4=63(1-

0.77)+2530·0.77=1960 kJ/kg. The mass flow rate of steam involved is finally obtained from 

 3 4ST ST ST
W m h h  , with 2 MWSTW   and a result: 
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i.e. at least 1.54 kg/s of steam would have to be processed in the steam turbine to generate 2 

MW, with a real value somehow larger in practice if a more practical value for T4 had been 

chosen (notice that with this change, the steam at the turbine outlet would not be so 'wet' (i.e. x4 

would be more practical). Furthermore, a practical isentropic efficiency of some 85% for the 

turbine would further increase the required steam flow-rate. 

 

c) Mass flow rate of air needed. 



Now we have to solve the gas turbine. As above, we assume isentropic compression and 

expansion, since there is no specific data on that. The mass flow rate of air involved, GTm , is 

obtained from the work delivered by the gas turbine:  
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with a result of: 
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i.e., a minimum of 19.6 kg/s of air must be compressed (the amount of fuel added is insignificant 

to the mass flow rate); in practice, with isentropic efficiencies around 0.85, some 30% or 40% 

more air would be needed to produce the 9 MW. 

 

d) Is it required to burn additional fuel in the heat-recovery boiler? 

First of all, we must check that the exhaust from the gas turbine is hotter than the steam to be 

produced. Assuming isentropic compression and expansion, the product gases exit at T4=679 K 

and the steam must be produced at T3=(400+273)=673 K < 679 K; i.e. there are 6 K of approach 

temperature jump, not too much for this preliminary analysis, but acceptable because, in practice, 

gases will be hotter at the exhaust due to energy degradation in the gas turbine.  

 

Secondly, we must check that the exhaust from the gas turbine has enough enthalpy to generate 

all the required vapour. The required heat for the boiler is   

 

     3 2 1.54 3260 63 4.9 MWB ST ST
Q m h h       

 

whereas from the gas-turbine exhaust we can recover up to  
34, ( ),vGT p GT p T STm c T T , where it has 

been taken into account the fact that the temperature profiles within the heat exchanger cannot 

cross each other, and the usual approximation of limiting the temperature approach up to the 

vaporisation point, has been adopted. Finding the boiling temperature at 4 MPa by Antoine's 

equation, 
3( ) 522 K

vp TT  , and substituting we get  
34, ( )vGT p GT p Tm c T T =19.6·1·(679522)= 

3.1 MW, what is not enough for the 5 MW needed, so we must revise our assumptions.  

 

NEW MODEL 

Let us introduce practical isentropic efficiencies of the order =0.85 for all compressors and 

expanders, as well as the more realistic condenser pressure of 3.6 kPa, corresponding to T1=300 

K, as said in the beginning. 

 



With these new assumptions, the isentropic vapour fraction is obtained from 

s4s=s3=s4L(1x4s)+s4Vx4s, with s4L=sR+cp,Lln(T4TR)=0+4.2ln(300/273)=0.40 kJ/(kg·K), and 

s4V=sR+hLV,R/TR+cp,vln(T4TR)Rln(p4pR)= 0+2500/273+1.9ln(300/273)0.46ln(3.6/0.6)= 8.48 

kJ/(kg·K); i.e. x4s=(s4ss4L)/(s4Vs4L)=(6.770.40)/(8.480.40)=0.79, and now 

h4s=h4L(1x4s)+h4Vx4s=2020, but now ST=(h3h4)/(h3h4s)=0.85 and thus h4=2210 kJ/kg, with a 

more reasonable x4=(h4h4L)/(h4Vh4L)=0.86. The mass flow rate of steam involved is finally 

obtained from  3 4ST ST ST
W m h h  , with 2 MWSTW   and a result: 
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instead of the 1.54 kg/s of steam previously found.  

 

Mass flow rate of air needed now changes because, for the gas turbine now: 
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and consequently: 
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what is a big increase over the 19.6 kg/s previously found. Now we need more heat to vaporise 

the greater amount of steam: 

  

     3 2 1.91 3260 113 6.0 MWB ST ST
Q m h h       

 

but on the other hand we have plenty of heat available now: 

   
34, ( ) 32.1 1 798 522 8.9 MW

vGT p GT p Tm c T T      . 

 

Comments 

In conclusion, the statement of this problem seems realistic, and the exercise has shown that, 

sometimes, drastic simplifying assumptions have to be revised if results fall within the bounds of 

admissible uncertainty. 
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