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VENUSIAN SATELLITE 

(SATÉLITE VENUSINO) 

 

Statement 

The following thermal model is to be analysed for the thermal control of a spacecraft orbiting Venus at 

500 km altitude in the ecliptic plane. The probe, spin stabilised, can be approximated by a cylindrical 

body 70 cm in diameter and 70 cm in height. Inside it, the platforms holding the instruments (zone A in 

Fig. 1) is approximated as a flat cylinder of 30 cm in height, 50 kg of mass, and 1000 J/(kg.K) of thermal 

capacity, with 100 W of continuous electrical dissipation. The outer cylindrical wall (zone B in Fig. 1), is 

1 cm thick, has 5 kg of mass with the same specific thermal capacity, an effective thermal conductivity of 

5 W/m·K), and is fully covered with solar cells. Two identical base plates (C in Fig. 1) close the cylinder 

at both ends; the properties of these panels are to be selected to solve the thermal requirement of the 

instrument zone being within the operational range of 0 ºC to 50 ºC. To start with the analysis, panels C 

can be modelled as honeycomb structures 5 mm thick, made of aluminium ribbon 0.1 mm thick, in 

hexagonal cells with 5 mm from side to side, covered by thin sheets painted black. All internal faces can 

be modelled as black-bodies, and the assemble A+B can be considered isothermal. To do: 

a) Find the external heat loads (solar, albedo and infrared) as a function of orbit position. 

b) Find the thermal conductance between each plate C and the assembly A+B. 

c) Find the view factors between all surfaces involved, and the radiative couplings between nodes. 

d) Establish the nodal equations. 

e) Find the steady temperatures at the sub-solar point. 

f) Same as above but on the opposite point in the orbit. 

g) Find the eclipse duration and compare it with the spacecraft relaxation time. 

h) Find the temperature evolution along the orbit, in the periodic state. 

i) Redesign the C panels if necessary. 

 
Fig. 1. Sketch of the Venusian satellite at sub-solar point in a plane perpendicular to the orbital one. 

 

  Para el estudio térmico preliminar de un pequeño satélite en órbita alrededor de Venus a 500 km de 

altitud y en el plano ecuatorial, se propone el siguiente modelo. Se trata de un satélite cilíndrico 

estabilizado por rotación, de 70 cm de diámetro y 70 cm de altura. En su interior hay una plataformas 

porta-instrumentos (zona A en la Fig. 1) que se aproximan a un cilindro plano de 30 cm de altura, 50 kg 

de masa y 1000 J/(kg·K) de capacidad térmica, con 100 W de disipación eléctrica continua. La envoltura 
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cilíndrica exterior (zona B en la Fig. 1), tiene un grosor de 1 cm, 5 kg de masa, la misma capacidad 

térmica específica, una conductividad efectiva de 5 W/m·K), y está completamente cubierta con células 

solares. Dos placas base idénticas (C en la Fig. 1) cierran el cilindro en ambos extremos; Las propiedades 

de estos paneles deben seleccionarse para resolver los requisitos térmicos de la zona del instrumento 

dentro del rango operativo de 0 ºC a 50 ºC. Para comenzar con el análisis, los paneles C se pueden 

modelizar como estructuras de nido de abeja de 5 mm de espesor, hechas de hoja de aluminio de 0.1 mm 

de espesor, en celdas hexagonales con 5 mm de lado a lado, cubiertas por láminas delgadas pintadas de 

negro. Todas las caras internas pueden suponerse cuerpos negros, y el conjunto A+B puede considerarse 

isotérmico. Se pide: 

a) Determinar las cargas térmicas (solar, de albedo e infrarroja) en función de la posición orbital. 

b) Determinar la conductancia térmica entre cada nodo. 

c) Determinar los factores de vista y los acoplamientos radiativos entre cada nodo. 

d) Establecer las ecuaciones nodales. 

e) Determinar las temperaturas que se alcanzarían con la nave en el punto subsolar, supuesto 

régimen estacionario. 

f) Lo mismo, pero en el punto opuesto de la órbita. 

g) Determinar la duración del periodo de eclipse y compararlo con el tiempo de relajación 

térmica de la nave. 

h) Determinar la evolución de las temperaturas a lo largo de la órbita en el estado periódico. 

i) Rediseñar los paneles C si fuera necesario. 

 

Solution 

We start by making a compilation of relevant data for the Venusian orbit: 

 

Table 1. Data for the orbit around Venus. 

Parameter Symbol and value Comments 

Sun-planet 

distance 

Rsp=0.72 AU 1 AU=150·109 m. Rsp=108·109 m mean, 109·109 m at 

aphelion and 107·109 m at perihelion.  

Planet radius Rp=6052 km Nearly same size as the Earth. 

Planet mass Mp=4.87·1024 kg Nearly 0.8 times that of Earth. 

Solar irradiance E=2625 W/m2 E0.72=E1(1/0.72)2=1361/0.722. 

Albedo p=0.76 (0.65..0.80 from different sources). 

Surface temperat. Tp=737 K Very uniform (720..740 K). 

Planet emissivity p=0.013 Emittance, M=Tp
4=210 W/m2. 

Satellite relative 

altitude 

h=H/R=500/6052=0.083 Very low altitude; Venus has a thick atmosphere that 

reaches 250 km altitude. 

Solar angle (Sun 

direction relative 

to orbit plane) 

=0 Can be taken as an equatorial orbit since Venus orbit 

inclination is only 3.4º (really 176.6º because it is 

retrograde; compare with 23.5º for the Earth). 

Orbit period To=5830 s (1.62 h) T=2[(Rp+H)3/(GMp)]1/2, G=6.6742·10--11 m3·kg-1·s-2. 

Eclipse fraction Te/To=0.37 Te/To=(1/)arccos(((2h+h2)1/2/(1+h))=(1/)arcsin(1/(1+h)). 

Eclipse duration Te=2160 s (36 min) Penumbra details are ignored. 

Eclipse start angle es=1.98 rad (113º) es=arcsin(1/(1+h)). 

Eclipse end angle ee=4.30 rad (247º) ee=2es. 

 

http://imartinez.etsiae.upm.es/~isidoro/pr4/htm/c13/p711.html
https://en.wikipedia.org/wiki/Venus
http://imartinez.etsiae.upm.es/~isidoro/tc3/Planet%20and%20moon%20properties.pdf
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Notice that the angular position along the orbit, , has the origin at the sub-solar point (see the sketch in 

Fig. 2, which is an upside-down view; compare it with the frontal view in Fig. 1). 

 

 
Fig. 2. Orbit view from the North Pole, to show the angular potion origin along the orbit, and the 

eclipse period. 

 

We can compute and compile relevant physical parameters (geometrical and thermal) for the spacecraft. 

 

Table 2. Data for the spacecraft. 

Parameter Symbol and value Comments 

Outer diameter D=0.7 m Axis pointing to ecliptic North. 

Overall length L=0.7 m  

Cylinder thickness =0.01 m m=5 kg. Mean density mean=m/V=5/0.0152=330 kg/m3. 

Base plate int. dia. Dint= 0.68 m Dint=DThe base is assumed to fit inside. 

Base plate int. area Abase,int=0.363 m2 Abase,int=D2/4=·(0.702·0.01)2/4. 

Base plate ext. area Abase,int=0.385 m2 Abase,ext=D2/4=·0.702/4. 

Base plate thickness b=0.01 m Mean density mean=m/V=140 kg/m3 (from honeycomb data). 

External cylind. area Alat=1.54 m2 Alat=DL=·0.7·0.7. 

Ext. cylind. absorpt. =0.75 From Tables. 

Ext. cylind. emissiv. =0.75 From Tables. 

Ext. frontal area Afrontal=0.49 m2. Afrontal=DL=0.7·0.7.  

Ext. total area Atotal=2.31 m2. Atotal=DL+2D2/4=0.7·0.7+20.72/4. 

Int. cyl. free area, ½ Acyl,int=0.42 m2 =DLb=·0.68·(0.70.32·0.005)/2. 

Aluminium density. =2700 kg/m3  

Al. thermal conduct. k=140 W/(m·K) It depends a lot on the alloy; this is for Al-5052. 

Al. thermal capacity. c=900 J/(kg·K)  

Al. honeycomb eff=144 kg/m3 eff=(8/3)/s=2700·(8/3)·(0.0001/0.005). 

Al. honeycomb keff=4.2 W/(m·K) keff=k(3/2)/s=k(3/2)/s=140·(3/2)·(0.0001/0.005) 

Al. honeycomb m=0.26 kg m=effAface,int=144·0.363·0.005. 

Instr. plate thickness A=0.3 m Mean density mean=m/(AAA)=50/(0.363·0.3)=460 kg/m3. 

 

And now we may start answering the stated questions. 

 

a) Find the external heat loads (solar, albedo and infrared) as a function of orbit position. 

Solar absorption 

For an orbit in the ecliptic, a spin stabilised axisymmetric body receives a constant solar power when lit 

(and zero at eclipse). In our case, only the cylindrical surface gets sunshine: 

 

 ,A+B frontalsQ EA =0.75·2625·0.49=965 W   (0 under eclipse, i.e. for  mod 2  [es,ee]) 

 ,C frontal 0sQ EA   all the time. 

 

http://imartinez.etsiae.upm.es/~isidoro/dat1/Thermooptical.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/Thermooptical.pdf
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where all the absorbed energy is assumed to be thermally dissipated within the A+B assembly. Notice 

that, if A and B were separately consider, a more careful analysis would be required, splitting the 

absorbed energy in the electrical part, ael, and the thermal part, ath, such that ael=Fpq, with  being the 

solar cell efficiency, Pele,max/(EA), and Fpq a packaging factor (ratio of active cell area to total area), and 

th=el; besides, the electrical part would be a sink term in the energy balance of B (the power 

generator), and a source term in the energy balance of A (the power consumption equipment). However, 

we should check afterwards that the electrical dissipation stated, 100 W continuously, is compatible with 

a reasonable electricity production based on solar panel area, orbit averaged solar irradiation, and cell 

efficiency.  

 

Albedo absorption 

For albedo absorption, the geometrical aspects are much more complicated. In the most important and 

simplest case of the sub-solar point, albedo absorption is proportional to reflected power, pEs (with 

Venus albedo p=0.76 found in Tables), an effective area defined in terms of the view factor to the planet, 

Fb,p, another view factor related to the planet phase as seen from the body, Fa, and body absorptance, , 

i.e.: 

 

 a p p,b p a b b,p paQ F A F E F A F E      

 

For the base plates C, there is an analytical expression for the view factor from a small patch to a large 

sphere: 

 

 
 

2 0.083

C,p 22

1 1 2
arctan 0.26

12

hh h
F

hh h

 
   
  

 

 

The albedo factor, Fa, accounting for the partial sunlit of the planet out of the subsolar point, we may just 

use a cosine law, Fa=cos (when positive, i.e. Fa=0 in the range  mod 2  [/2,3/2], having neglected 

albedo contributions close to eclipse transitions). If we assume C to be a blackbody, C=1, albedo input 

becomes: 

 

 a,C a C C,p p 1 cos ·0.385 0.26 0.76 2625 200·cos  [W]Q F A F E            

 

with a ,C 0Q   in the range  mod 2  [/2,3/2] as said. Notice that we assign the whole base area to 

panel C (AC=0.385 m2) without discounting the rim area that we assumed belonging to the cylinder. 

 

For the cylindrical surface, there is no analytical expression for its view factor towards a large sphere, 

although in the case of an untilted cylinder, it can be reduced to a quadrature with complete elliptic 

integrals of the second kind E(x): 

 

     

1
arcsin

1

B,p 2

0

4
sin E sin d

h

F


  


 
 
 



   

 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Planet%20and%20moon%20properties.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf


 

Venusian satellite 5 

with a value of FB,p=0.34 for h=0.083.  

 

Instead of the integration, a good approximation may be to use the view factor from a small sphere to a 

large sphere, since our cylinder has a slenderness H/R=1, obtaining: 

 

 
2 0.083

C+B+C,p

1 2
1 0.31

2 1

hh h
F

h

 
   

 
 

 

 

Notice that the global view factor for our satellite, found by composition, 

FC+B+C,p=(2ACFC,p+ABFB,p)/(2AC+AB)=(2·0.385·0.26+1.54·0.34)/(2·0.385+1.54)=0.31, is practically equal 

to the simplest spherical model used above. 

 

Another, more general, approximation may be to assimilate the cylinder to a square prism of the same 

lateral area (D=4L’, i.e. of side L’=0.7/4=0,55 m), and use the available view factors for the frontal 

face, F12=1/(1+h)2=1/(1+0.083)2=0.85, and combine it with the level faces computed above, to yield: 

 

 

   
0.083

B B,p B,frontal B,frontal,p B,lateral B,lateral,p

A+B A+B,p2

B,p

lat

2 0.55 0.7 0.85 2 0.55 0.7 0.26

0.53
0.53 m 0.34

1.54

h

A F A F A F

A F
F

A



         

    
 

 

Albedo absorption by the cylindrical body, covered with solar cells with =0.75 (we take the beginning-

of-life value from Thermo-optical data), would be then: 

 

 a,B a B B,p p 0.75·cos 1.54 0.34 0.76 2625 775·cos  [W]Q F A F E           

 

with a,B 0Q   in the range  mod 2  [/2,3/2] as above. Notice that the whole albedo load at the 

subsolar point (Fa=1), 775+2·200=1175 W, is greater than the direct solar load, 965 W, because of the 

large albedo of Venus. Notice also that we have assumed again that all the energy absorbed goes to 

heating in the A+B assembly, since electricity production and consumption occur inside the system. 

 

Planet IR absorption 

This problem is much easier than the albedo one, because now the input is constant along the orbit. The 

view factors from object to planet have already been calculated for the albedo input, and there is no 

planet-phase effect here, i.e.: 

 

 

8 4

p,C4

p FIR p p,b p b b,p p 8 4

p,B

1 0.385 0.26 0.013 5.67 10 735 22 W

0.75 1.54 0.34 0.013 5.67 10 735 85 W
p

Q
Q A F M A F T

Q
   





        
  

       

 

 

An overall view of the three heat loads is presented in Table 3, and the variation along the orbit position is 

presented in Fig. 3 with equal scales to see the relative importance. 

 

Table 3. Summary of maximum environmental heat loads on the spacecraft. 

 Solar Albedo Planet IR Total 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/Thermooptical.pdf
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On each panel C 0 200 W 22 W 222 W 

On cylindrical surface B 965 775 W 85 W 1825 W 

On whole spacecraft (2·C+B) 965 1175 W 129 W 2269 W 

 

 
Fig. 3. Heating power received by direst solar radiation, Qs, by albedo, Qa, and by planet IR 

radiation, Qp, ), as a function of angular potion in the orbit, , with =0 at the subsolar point. 

a) At the cylindrical surface (B). b) At each of the two bases (C). 

 

b) Find the thermal conductance between each plate C and the assembly A+B. 

The goal is now to compute GBC in 
B C( )cond BCQ G T T  , which, in the quasi-one-dimensional model is: 

 

 
B joint joint C

cond B B 2 2 B C
CBB C

B B C C

1
( )BC BC

T T T T
Q k A k A G T T G

LLL L

k A k A

 
     



 

 

where A stands for the heat-flow cross-section area, and L for the characteristic length along the heat-flow 

path. In our case AB=Db=·0.7·0.01=0.022 m2 and AC=Dc=·0.7·0.01=0.011 m2 at the interface; the 

path along B is just LB=L/2=0.35 m, but for the path along C one has to consider the radial spreading, and 

set LC=area/perimeter=(D2/4)/(D)=D/4=0.175 m. The effective conductivity along the honeycomb C 

can be computed as keff=k/s (apart from a numeric factor of order one, depending on the orientation of 

the cells; see details in Honeycom panels), with k being the conductivity of the foil material making the 

honeycomb (in our case an aluminium alloy with say k=140 W/(m·K)), the foil thickness (0.1 mm) and 

s the side-to-side distance in a cell (5 mm). Substituting values we have: 

 

 kC=keff=k/s=140·(0.0001/0.005)=2.8 W/(m·K) 

 

and hence: 

 

 
CB

B B C C

1 1 W
0.113 

0.35 0.175 K

5·0.022 2.8·0.011

BCG
LL

k A k A

  



 

 

c) Find the view factors between all surfaces involved, and the radiative couplings between nodes. 

Although it is only the view factors between isothermal surfaces what is needed, and in our case this is a 

trivial question because panels C only see isothermal half-spaces (A+B, and deep space), we develop here 

a three-body model: A, B, and C, which, because of the mid-plane symmetry reduce to the half-body 

sketch shown in Fig. 4. 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Heat%20transfer%20and%20thermal%20radiation%20modelling.pdf
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Fig. 4. Sketch of the half-satellite geometry for view factor calculations. 

 

The view factor between the two concentric circular faces C1 and A1 is: 

 

 12
2

x y
F


 , 

2 2 2

2 14y x r r  , 2 2 2

1 2 11 1x r r r   , r1=R1/H, r2=R2/H 

 

In our case, the separation is H=(L2CA)/2=(0.72·0.0050.3)/2=0.195 m, and the radii 

R1=R2=R=(D)/2=(0.72·0.01)/2=0.34. Thence, r1=r2=R/H=0.34/0.195=1.74, x=1+1/1.742+1=2.33, 

y=(2.3324)1/2=1.20, and finally FA1,C1=FC1,A1=(2.331.20)/2=0.57. 

 

The view factor from one of the discs to the cylindrical surface, FA1,B1=FC1,B1, can be obtained by the 

closeness relation, FA1,B1+FA1,C1=1, thus FA1,B1=1FA1,C1=10.57=0.43. By the reciprocity relation, 

AA1FA1,B1=AB1FB1,A1, and thus, with AA1=Aface,int=0.363 m2 and AB1=(D2)H=(0.72·0.01)·0.195=0.42 

m2, FB1,A1=AA1FA1,B1/AB1=0.365·0.43/0.42=0.37. 

 

The view factors from B1 must verify the closeness relation, FB1,A1+FB1,B1+FB1,C1=1, so that 

FB1,B1=1FB1,A1FB1,C1=10.370.37=0.26, what completes the view factor matrix:  

 

 

1, 1 1, 1 1, 1

1, 1 1, 1 1, 1

1, 1 1, 1 1, 1

0 0.43 0.57

0.37 0.26 0.37

0.57 0.43 0

A A A B A C

B A B B B C

C A C B C C

F F F

F F F

F F F

   
   

   
  
  

 

 

Notice that if the view factor from node C to node A+B was inquired, the answer is simple: half of the 

emission from C goes to the background and the other half goes to node A+B. However, the area ratio 

and the reciprocity rule dictate that FA+B,C=2AC1FC1,A+B/(AA1+AB1+AB2)= 

2·0.363·0.5/(0.363+0.417+0.770) = 0.234, i.e. only 23.4 % of what emits A+B impinges on C. Another 

FA+B,∞=AB2/(AA1+AB1+AB2)=49.7 % goes out to space, and the remaining 26.9 % goes from A+B to A+B. 

Notice that in some cases we have neglected the rim area of the cylinder (of width B=1 cm) against the 

other areas (AA1, AB1, andAB2).  

 

Radiative couplings 

We want to find the heat transfer by radiation from an isothermal black-body surface A1 at T1 to another 

isothermal black-body surface A2 at T2, which, in view of the fourth-power Stefan-Boltzmann’s emission 

law, we may set as  4 4

12 12 1 2Q R T T  , where R12 is a so-defined radiative coupling. This radiative heat 

transfer is the net radiation flow  4 4

12 12 1 2Q R T T  . In our case of black-body surfaces, radiative 

coupling only depends on view factors, R12=A1F12=A2F21. The computation is performed in the following 

point.  

 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Radiation%20View%20factors.pdf
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d) Establish the nodal equations. 

The thermal-energy balance of each element (nodal equations) is: 

 

 

, , , , , , , , , , , , ,

d

d

i
i i i dis i i dis i con i rad i dis i j con i j rad i s i a i p i

j j

T
m c W Q W Q Q W Q Q Q Q Q Q

t
              

 

where the radiation loads from the Sun, albedo, and planet emission, have been separated from the rest of 

the radiative couplings (care must be paid to avoid counting radiative couplings twice, or none at all). 

 

In particular, the nodal equation for one of the panels C (black body) is: 

 

 

   

, , , , , , , , , , ,

4 4 4

B,C C C,A+B , ,

d

d

0 0

C
C C C dis C B con C B rad C A rad C s C a C p C

A B C A B C C a C p C C

T
m c W Q Q Q Q Q Q Q

t

G T T A F T T Q Q A T 



 

        

        

 

 

where the last term accounts for the energy emitted by C from its external surface, in all directions, 

including that towards the planet, since the planetary term only accounts for the gross input, not net input. 

Collecting all the values previously calculated ( ,C aQ =200 W with a cosine factor variation along the lit 

orbit, ,C pQ =22 W, FA+B,CAA+B=FC,A+BAC=1·0.363=0.363 m2, GB,C=0.083 W/K), we have (in SI units): 

 

     

     8 4 4 8 4d
0.24 900 0 0.11 2.06 10 0 200·cos · cos 0 22 2.06 10

d

C
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T
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  

                

 

On the other hand, the energy balance for the assembly A+B is: 

 

 A+B
A+B A+B , , , , , A+B, A+B, A+B, A+B,

d
2 2

d
A B dis C A B con C A B rad s a p

T
m c W Q Q Q Q Q Q

t
           

 

where the radiative and conductive couplings with the two end plates has been put in terms of the 

corresponding previously-computed terms for one end-face. Notice again we should not account for the 

electrical energy dissipation in A because we have taking the gross solar absorption in the solar cells, and 

the 100 W are internal to the A+B system. Substituting values we have (in SI units): 
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C C

T
T T T T

t

T  





             

          

 

 

Mind that the improper notation ||<e=1.98 rad has been quoted for simplicity in writing, but the proper 

-dependence shown in Fig. 3 has been used in the computations. The relation between time and angle, 

both with origin at the sub-solar point, is t/To=/(2), with the orbit period To=5830 s. 

 

e) Find the steady temperatures at the sub-solar point. 
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We look for the solution to the two nodal equations in static conditions at =0, i.e. namely: 

 

    8 4 4 8 40 0 0.11 2.18 10 0 200 22 2.06 10A B C A B C CT T T T T 

              

    8 4 4 8 4

A+B0 0 2 0.11 2 2.18 10 965 775 85 6.55 10A B C A B CT T T T T 

                

 

The system must be solved by iterations, and yields TA+B=392 K (118 ºC) and TC=360 K (87 ºC), 

although it can be solved explicitly in T4 if the conductive coupling is neglected, what would yield almost 

the same results. Notice that TA+B=118 ºC is well over the warm-operation limit of 50 ºC initially 

established. 

 

If the whole satellite was supposed isothermal (a one-node model), the energy balance would have been: 

 

 
8 4d

0 0 965 1175 129 10.9 10
d

dis s a p

T
mc W Q Q Q Q T

t



             

 

where the loads on A+B and on the two plates C, have been added, and the emission from the whole 

satellite area Atotal=1.54+2·0.385=2.31 m2
, with a weighted average emissivity (assumed to be 

mean=(0.75·1.54+2·0.385)/2.31=0.83) has been accounted for, yielding a value T=380 K (107 ºC).  

 

f) Same as above but on the opposite point in the orbit. 

Taking out solar and albedo contributions, the previous system becomes: 

 

    8 4 4 8 40 0 0.11 2.06 10 0 0 22 2.06 10A B C A B C CT T T T T 

              

    8 4 4 8 4

A+B0 0 2 0.11 2 2.06 10 0 0 85 8.73 10A B C A B CT T T T T 

                

 

with the result TA+B=187 K (86 ºC) and TC=183 K (90 ºC). Notice that TA+B=86 ºC is well below the 

cold-operation limit of 0 ºC initially established. Again, with the one-node model: 

 

 8 40 0 0 0 129 10.7 10 186 KT T         

 

We can see that Venusian orbit is hot on the sunlit side (and that albedo contributes more than the direct 

sunshine), but very cold in the shadow side, in spite of the very high temperature of Venus’ surface, 

because the great greenhouse effect greatly decreases planet emittance (albedo radiates pE=2014 W/m2, 

whereas planet infrared emission is just T4=0.013·5.67·10-8·7354=215 W/m2. 

 

g) Find the eclipse duration and compare it with the spacecraft relaxation time. 

The eclipse duration was calculated at the beginning Te=2170 s (36 minutes), from the eclipse fraction, 

Te/To=(1/)arccos(((2h+h2)1/2/(1+h))=(1/)arcsin(1/(1+h))=0.37, and the orbit period, 

To=2[(Rp+H)3/(GMp)]1/2=2[(6052+500)3/(6.7·10-11·4.87·1024)]1/2=5830 s (1.6 h). These values are very 

similar to low Earth orbit values (about To=1.5 h and Te=34 min for LEO). 

 

The thermal relaxation time of a body is the time it takes to heat up or cool down when the boundary 

conditions are changed (or the initial conditions were not that of equilibrium). As heat losses to the 
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environment (and most of the times heat gains from heaters or the environment) are dependent on a 

temperature difference, the relaxation time would theoretically take an infinite time, and the only interest 

is on a finite time ‘representative’ of the relaxation process, usually the time it takes for the initial 

temperature jump (difference between the initial and final states) to reduce to a half, or the time it would 

take to bridge the temperature gap with the initial rate; for a simple exponential response, 

T=T0exp(t/tr), the initial jump shortens to a half after trln2=0.69·tr, whereas at the initial rate 

dT/dt|0=T0/tr, the jump would last tr, corresponding with the real rate law to a jump reduction from 

T0 to T0/e=0.37·T0; the difference is not important for an order of magnitude analysis. 

 

In our case, the interest on relaxation time is to elucidate if there is time enough to cool down from sub-

solar hot-conditions to the cold conditions at the opposite point, i.e. if the thermal inertia of the satellite 

allows to cool down from the average 380 K found in §e to the average 181 K of §f in about Te=2170 s 

(36 min). To avoid the need of numerical computations, a first approximation may be to analyse the 

cooling of the satellite from some initial conditions (e.g. the sub-solar calculated T=380 K) in the deep-

space environment of negligible temperature (really T=2.7 K), what can be solved either by order-of-

magnitude analysis, or by integration: 
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Substituting in the last result m=55 kg, c=1000 J/(kg/K), A=2.31 m2, =0.83 (the average), and T0=380 K, 

one gets a relaxation time of tr=4600 s (1 h and a quarter) according to the first guess, and of tr=21 500 s 

(6 h) according to the second guess, more realistic because the cooling rate decreases rapidly with 

decreasing temperature (it is proportional to T4). A graph of the temperature evolution, Fig. 5, may clarify 

the point.  

 

 
Fig. 5. Cooling down of our spacecraft, assumed isothermal (one node), if all the heat loads were 

absent, starting from Tini=380 K at t=0, into a 2.7 K environment (Venusian eclipse only lasts 

36 min, i.e. 2170 s).   

 

h) Find the temperature evolution along the orbit, in the periodic state. 

It is just a matter of numerically solving the system of two ordinary differential equations above obtained: 

 

 
     8 4 4

8 4

d
0.24 900 0 0.18 2.06 10 0 200·cos · cos 0

d

16 2.06 10

C
A B C A B C

C

T
T T T T

t

T

 

 



           

  
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with the change t/To=/(2) (To=5830 s), and appropriate initial conditions. If may start with the steady 

values obtained before, but they do not correspond to the dynamic, periodic, sub-solar-point values, thus, 

we start with a coarse guess, TA+B=TC=300 K (27 ºC), and integrate the two coupled differential equations 

using a simple Euler method, obtaining the results present in Fig. 6a, where we see that a periodic 

solution (Fig. 6b) is reached after a couple of orbit periods.     

 

 
 

 
Fig. 6. a) Temperature evolution along the orbit, for the two nodes (A+B, in blue, and C, in red), 

starting with the whole body at 300 K, showing the transitory orbits until the periodic 

solution. b) Periodic solution. 

 

The results show that the intended operational temperature range for the electronics platform, 0 ºC < TA+B 

< 50 ºC, is exceeded during most of the orbit period (its mean value is TA+B,mean=59 ºC). Notice that 

dynamical simulation predicts maximum temperatures of TA+B,max=75 ºC and TC,max=55 ºC, taking place 

after the sub-solar point, whereas the static analysis at the subsolar point yielded TA+B,max=118 ºC and 

TC,max=87 ºC. Similarly, dynamical simulation predicts minimum temperatures of TA+B,min=43 ºC and 

TC,min=69 ºC, taking place near the end of the eclipse, whereas the minimum static values were 

TA+B,min=86 ºC and TC,min=90 ºC, clearly showing the effect of the much larger thermal inertia of A+B. 

 

i) Redesign the C panels if necessary. 

If the thermal conductance between the main body A+B and the polar plates C, which act as radiators 

(emit much more energy than what they get), could be increased, then both temperature-profiles would 

approach each other (see Fig. 6), and the equipment platform might be kept within limits. 
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To that aim, and in order not to increase the mass substantially, the best approach may be the 

implementation of highly conducting strips joining A+B with C.  

 

Back to Spacecraft thermal control 

Back to Heat and mass transfer 

Back to Thermodynamics 

 

http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Control.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/index.htm
http://imartinez.etsiae.upm.es/~isidoro/bk3/index.html

