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FORCED AND NATURAL CONVECTION 

Curved boundary layers, and flow detachment 

Heat and Mass Transfer by convection is here focused on heat and mass flows at walls. After a general 

introduction to convection, and the basic boundary layer modelling, we proceed with the analysis of heat 

and mass convection over curved surfaces, what shows a new key feature, the longitudinal pressure-

gradient implied by the curvature, which may cause detachment of the boundary layer, becoming a free 

shear layer that forms a wake behind the object; recall that most practical fluid flows are high-Reynolds-

number flows (due to the low viscosity of air and water), which are modelled (since the seminal work of 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
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Prandtl in 1904) as an inviscid external flow plus a viscosity-dominated flow confined within some thin 

shear layers, either bounded to solids, or free-moving within the fluid. 

 

If we start with zero-incidence (a sharp solid surface aligned with the flow, Fig. 1), and consider the effect 

of a smooth curvature bending downwards (convex surface from the top, concave surface from the 

bottom), the external flow (outside the boundary layer) will accelerate over a concave surface (to keep the 

same flow-rate with a converging cross-section area, like in a nozzle), and will decelerate over a convex 

surface (to keep the same flow-rate with a diverging cross-section area, like in a diffuser). We are 

considering only subsonic flow. 

 
Fig. 1. Boundary layer flow over a curved thin plate with zero incidence, to see the development of a 

diverging flow (upper side) and a converging flow (lower side). It is shown within a rectangular 

channel just to emphasize the change in cross-flow area.  

 

The pressure-gradients in the external flow automatically transmit to the boundary layer, since the 

transversal momentum equation showed that the transversal pressure-gradient within the boundary layer 

is negligible. If the pressure-gradient is favourable (i.e. causing the fluid to accelerate, what corresponds 

to a negative gradient) there is no big changes: the local Reynolds number increases so the boundary layer 

thins, increasing the wall gradients (i.e. increasing both the shear stress and the convective coefficient), 

and causing laminar-to-turbulent transition earlier downstream than over a flat plate. If the pressure-

gradient is adverse (i.e. positive, as in the upper part of Fig. 1, causing the fluid to decelerate) there can be 

a big change: the local Reynolds number decreases so the boundary layer thickens, decreasing the wall 

gradients. The deceleration imposed by the external pressure-gradient in this latter case may cause the 

boundary-layer flow to reverse, since within the boundary layer, the velocity must decrease by 

mechanical energy dissipation by friction, emdf (which would force the flow to stop), on top of which is 

the retardation caused by the pressure-gradient, as explained by the modified Bernoulli equation: 

 

  2 2

0 0

1 1
0 0

2 2
mdf mdfp v e p v e 

 

 
          
 

 (1) 

 

Flow separation causes local pulsating flows and forces in a closed reattachment region (before the wake 

detaches, see Fig. 1), with great heat-transfer enhancement, but also with a sharp increase in wake 

thickness and drag, and loss of transversal suction (lift force).  

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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Flow separation renders the analytical modelling of momentum, heat, and mass flows over bodies 

intractable except in very slender cases (blades and foils), and, although the numerical simulation using 

commercial CFD packages gives nowadays accurate predictions in many cases, empirical correlations are 

still widely used in analysis and design.  

Forced flow around bodies 

In all practical cases of flow around bodies, there is flow detachment and turbulence, preventing a 

detailed analysis and forcing an empirical approach. When the body is so streamlined that there is no flow 

separation, as in aerodynamic airfoils, boundary-layer modelling, accounting for curvature, is good 

enough to compute transfer rates of momentum (viscous drag), energy (heat) convection, or mass 

convection. The other extreme case without flow separation is in the viscosity-dominated flow at very 

low Reynolds numbers, as in the Stokes flow. Thus, in all practical cases of flow around bodies, one has 

to resort to empirical correlations for convection analysis. 

 

The most common configurations of forced flow around blunt bodies (to be further analysed below) are: 

 Flow around a circular cylinder. 

 Flow around tube banks. 

 Flow around a sphere. 

 

Many other correlations for two-dimensional and tri-dimensional objects have been developed and can be 

found in the literature; e.g. flow around triangular or square bars at different angles, flow around 

hemispheres or caps, etc. 

Forced flow around a cylinder 

The flow past a two-dimensional cylinder in a uniform stream is one of the most studied problems in fluid 

mechanics. The different flow regimes in terms of relative velocity for the flow across a cylinder are 

presented in Table 1. 

 

Table 1. Main flow regimes for flow across a cylinder. 

0<ReD<5 

 

Un-separated streaming flow, also named 

creeping or Stokes flow. 

5<ReD<40 

 

A pair of symmetric vortices appears, counter-

rotating and fixed in the wake, with their 

elongation growing with ReD. 

40<ReD<150 

 

A laminar boundary layer detachment by 

periodic vortex shedding of eddies from 

alternating sides at a frequency fK (drag force 

pulsates at 2fK) given by the relation Sr=f(Re), 

with the Strouhal number Sr=fKD/V=0.20.02 

for 102<ReD<105. Named Kármán vortex street. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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150<ReD<3·105 

 

The boundary layer is laminar up to the 

separation point (at the front); the vortex street 

is turbulent, and the wake flow field is 

increasingly three-dimensional. At ReD=3·105, 

Strouhal number shows scatter in the range 

Sr=0.18..0.28. 

3·105<ReD<3.5·106 

 

The laminar boundary layer undergoes transition 

to a turbulent boundary layer before separation, 

which now is at the rear; the wake becomes 

narrower and disorganized. 

3.5·106<ReD  

 

A turbulent vortex street is re-established, but it 

is narrower than was the case for 

150<ReD<3·105. 

 

Heat transfer around a circular cylinder can be modelled by the correlation (Churchill-Bernstein-1977): 

 

 

 

4 5
5 81 2 1 3

1 4
2 3

0.62
0.3 1

2820001 0.4

D D
D

Re Pr Re
Nu

Pr

  
    

     
 

 (2) 

 

good for 102<ReD<107 and Pe≡ReDPr>0.2. Azimuthally, Nu is highest at 110º and lowest at 80º (from 

leading point). Ref.: Churchill, S.W. y Bernstein, M., A correlating equation for forced convection from 

gases and liquids to a circular cylinder in cross-flow. J. Heat transfer. Vol. 99, pp. 300-306, 1977. For hot 

wire velocimetry in gases (in the range 1<ReD<1000), a simple correlation  2 3D DNu Re  , similar 

to the pioneering correlation by King in 1914, may be good enough, although better fittings exists (e.g. 

Collis & Williams, 1959, J. Fluid Mech. 6, pp. 357-384). 

 

Drag force around a circular cylinder varies with flow speed as shown in Fig. 2 and can be approximated 

as follows: 

ReD range cD Comments 

ReD<10 cD=8/(ReD(2-lnReD)) Lamb approximation to Stokes flow for slow laminar motion 

(creeping flow). Stokes paradox: no solution to the low-

Reynolds number Navier-Stokes equations can be found 

which satisfies the boundary conditions at the surface and at 

infinity. See below the exact solution for a sphere. 

10<ReD<4105 cD=1 Newton law of constant drag coefficient. 

ReD>4105 cD=0.3 Turbulent transition depends on the turbulence intensity of 

the stream; it is ReD=2105 for iu≡v'rms/v=1, but drops to 2104 

for iu=10 and may reach 4105 for iu=0.1. 
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Fig. 2. Drag coefficient, cD, for a cylinder, a disc, and a sphere. Drag force is FD=cDA½v2. 

Forced flow around tube banks 

A tube bank, or tube bundle, is an array of parallel tubes (circular or not) exposed to a transversal flow 

(perpendicular or not). Tube-bank geometry is characterised by layout (see Fig. 3), and longitudinal and 

transversal pitch (separation between centres), with sh being the longitudinal pitch (i.e. along the flow), 

and sv transversal pitch, for both, in-line, and staggered geometries. At least 6 tubes per transversal row, 

with tube slenderness L/D>5, are usually assumed to avoid the need of end-effects corrections.  

 

 
Fig. 3. In-line and staggered tube-bank arrangements. 

 

Heat transfer in tube banks can be computed from the general correlation (Zukauskas-1987): 

 

  
0.25

1 2 ,max

n m

D D sNu C C Re Pr Pr Pr  (3) 

 

good for 0.7<Pr<500 and 1<Pr/Prs<3.2, where C1 depends on the number of rows Nrows as: 

 

 Nrows=1 2 3 4 5 7 10 13 >16 

In-line 0.70 0.80 0.86 0.90 0.93 0.96 0.98 0.99 1 

Staggered 0.64 0.76 0.84 0.89 0.93 0.96 0.98 0.99 1 

 

and C2, n and m depend on layout and flow regime as: 
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Bank type ReD range C2 n m 

In-line 0<Re<102 0.9 0.4 0.36 

In-line 102<Re<103 0.52 0.5 0.36 

In-line 103<Re<2·105 0.27 0.63 0.36 

In-line 2·105<Re<2·106 0.033 0.8 0.4 

Staggered 0<Re<5·102 1.04 0.4 0.36 

Staggered 5·102<Re<103 0.71 0.5 0.36 

Staggered 103<Re<2·105 0.35(sv/sh)
0.2 0.6 0.36 

Staggered 2·105<Re<2·106 0.031(sv/sh)
0.2 0.8 0.36 

 

Parameters in (3) must be evaluated at the mid input/output temperature, except for Prs, that should be 

evaluated at the tube surface. Besides, in the computation of the Reynolds number in (3), 

ReD,max=vmaxD/ν, the maximum flow speed, vmax, should be used: 

 

Bank type Maximum speed 

In-line  max v vv s s D v     

Staggered, with    
1 2

22 2 2h v vs s s D   
 

  max v dv s s D v     

Staggered, with    
1 2

22 2 2h v hs s s D   
 

  max v vv s s D v     

 

If the tube bank is slanted an angle  perpendicular to the flow direction, the same correlations can be 

applied if the obtained Nusselt number, Nu, from (3) is multiplied by sin()0.6 to account for the tilting. 

The effect of finned tubes may be also taken into account by adding to the naked-tube area the fin-root 

area multiplied by the fin efficiency. 

 

Ref.: Zukauskas, A. "Heat transfer from tubes in cross flow", in Handbook of single phase convective 

heat transfer, Wiley Interscience, 1987. 

Forced flow around a sphere 

Heat transfer around a sphere can be modelled by the correlation (Whitaker-1972): 

 

    
1 41 2 2 3 2 52 0.4 0.06D D D wNu Re Re Pr      (4) 

 

good for 3.5<ReD<7.6·104, 0.7<Pr<380, and 1</w<3.2, with all properties evaluated at T∞ except w at 

Tw. Ref.: Whitaker S., Forced convection heat transfer correlations for flow in pipes, past flat plates, 

single cylinders, single spheres and for flow in packed beds and tube bundles. AIChE Journal, Vol. 18, 

pp. 361-371, 1972. 

 

Notice that NuD→2 for low Reynolds numbers (and the same happens in the natural convection case, see 

below). In fact, this is the limit of no convection, i.e. of pure heat conduction through the fluid, with a 

temperature field T(r)=T∞+( TwT∞)R/r and hence  ( ) ( )w wr R
q h T T k dT dr k T T R 
      , with 

the result that NuD=hD/k→2 in spite of the common saying that Nu is the ratio of convective to 

conductive heat transfer (it is NuR=hR/k→1). Notice also that Nu being finite, h is proportional to 1/R and 

approaches infinite as D→0.  
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For a falling drop, and for droplets from injectors, 1 2 1 32 0.6D DNu Re Pr   is often used. Notice that, in 

absence of convection, NuD=2 for a sphere in a heat-conducting media, as can easily be analytically-

deduced. 

 

Flow drag on a sphere was presented in Fig. 2, and can be modelled as: 

ReD range cD Comments 

ReD<1 cD=24/ReD Stokes law, FD=3DV, for slow laminar motion (creeping flow). 

2<ReD<500 cD=18.5/Re0.6 Intermediate regime 

500<ReD<3105 cD=0.44 Newton law of constant drag coefficient. 

ReD>4105 cD=0.1 Drag reduction in a smooth sphere due to turbulent transition. Transition 

depends on surface roughness and on the turbulence intensity of the 

stream (it is ReD=2105 for iu≡v'rms/v=1, and drops to 2104 for iu=10 (e.g. 

in a golf ball), and may reach 4105 for iu=0.1). 

 

There are other forced-flow configurations of interest in heat and mass transfer, which have been studied 

and correlations are available, as for flows through packed beds, impinging jets (free or submerged, gas or 

liquid; e.g. Webb & Ma-1995), etc. 

Pipe flow 

Heat and Mass Transfer by convection focuses on heat and mass flows at walls; so that, after the unbiased 

case of the forced flow over a flat plate presented aside, and the effects of curved boundary layers around 

bodies considered above, we deal now with heat and mass convection at internal walls of pipes and tubes 

due to an imposed fluid flow along them. 

 

The baseline configuration for the analytical and numerical-correlation studies of momentum, heat, and 

mass transfer in pipes and ducts corresponds to the circular pipe, what can be extrapolated to non-circular 

cylindrical pipes and ducts if an equivalent diameter is used, named hydraulic diameter and defined by: 

 

 

2 / 4

4
A D

p D

h

A
D D

p







   (5) 

 

A being the cross-section area and p its perimeter.  

Entrance region 

The entrance region to a pipe is the region where the fluid changes from the usually quiescent state in the 

supplying reservoir, to fully-developed flow downstream along the pipe. Neglecting the three-

dimensional effects of sucking (and a possible flow-detachment at the pipe-lips), we may consider as a 

model of the entrance region that of a uniform forced flow interacting with the duct wall, which, for 

radius-of-curvature of the duct-cross-section shape larger than the boundary-layer thickness, can be 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf


 

Forced and natural convection  page 8 

approximated by forced flow over a flat plate, until the boundary-layers from different walls meet at the 

centre of the duct, which, for cylindrical ducts, will occur when the boundary-layer-thickness, , equals 

the radius of the pipe, D/2, i.e. according to Table 4 aside, up to: 

 

 
 

1 2

4.92
0.01e

D

L
Re

x Dvx




    (6) 

 

for laminar entrance, to be doubled because now ReD is defined in terms of the mean velocity, um, from  

mm u A , instead of the maximum velocity (as explained below). By the way, Reynolds numbers in 

pipe flow can be computed in terms of mass-flow-rates as / 4 ( )DRe uD m D    ,  being the 

dynamic viscosity of the fluid. 

 

The correlation most used to compute the entrance length in laminar flow is, however: 

  

 0.05e
D

L
Re

D
  (7) 

 

i.e. in the usual limit ReD=2300, Le/D≈100 (e.g., 1 m for a 1 cm pipe with viscous flow; mind that this is 

not the common case, since for water at >0.5 m/s and for air at >7 m/s, the entrance boundary layer 

becomes turbulent at 1 m downstream). For turbulent flow, the same procedure (Table 4 aside) yields: 

 

 
 

1/4

1 5

0.38
1.41 ,e

D

L
Re

x Dvx




    

 1/4but 1.36 10 is used for turbulent entrance.e
D

L
Re

D
   (8) 

 

e.g., for a typical value of ReD=104, Le/D≈14 (that is why a value Le/D≈10 is commonly used as a rough 

estimation, because the growth is small: e.g. for ReD=106, Le/D≈40). 

 

A thermal-entry-length and a solutal-entry-length are defined in a similar way. In the laminar case, the 

correlations most used are Le,th/D=0.05ReDPr and Le,sol/D=0.05ReDSc (Kays & Crawford 1993), whereas 

in the turbulent case, the same expression (8) is used for all entry lengths: hydrodynamic, thermal, and 

solutal, since all transfers are dominated by the large eddy convection and not by diffusion details. 

 

It should be noted that both, friction and heat convection (and solutal), are enhanced at the entry region, 

because of the much higher velocity and temperature (and concentration) gradients there. Heat-convection 

correlations for laminar and turbulent flows in pipes are jointly presented further down in Table 2, but 

some theoretical analysis is developed first. 

Fully developed laminar flow 

It was found by Reynolds in 1883 that the developed flow in a straight circular pipe is laminar up to at 

least ReD=2300, with transition flow in the range 2000<ReD<10 000, or, most of the times between 

2300<ReD<4000 (always depending on wall smoothness, details in entrance geometry, initial turbulence 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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level, noise...), and being fully turbulent beyond. Transition to turbulence is delayed in curved pipes due 

to the stabilising contribution of the secondary flow generated by centrifugal forces. 

 

It can easily be deduced (as follows), that the velocity profile in steady laminar flow is parabolic. Taking 

a centred fluid cylinder up to radius r<R≡D/2, the force balance gives: 

 

 
2 2

d / d ( ) 02 d d
d 2 d 0 d d ( )

2 dx 4 dx

v r u Rr p R r p
r p r x u r u r   

 

  
       (9) 

 

from where the area-average speed is: 

 

 
2

0 0
m 2 0

( )1 d
u 2

8 d 2 2

R
ru r uR p

u rdr
R x


 


     (10) 

 

and the gradient at the wall du(r)/dr|r=R=4um/R. Equation (9) relates the mean flow-speed with the 

pressure gradient, although the standard way of presenting pressure-loss data is in terms of the dynamic 

pressure of the flow (½v2) and a pressure-loss coefficient cK, which for long pipes is recast as L/D: 

 

 
pipes

2 21 1 64
with (Poiseuille law for laminar flow)

2 2
t K m m

D

L
p c u u

D Re
       (11) 

 

The temperature profile can also be easily obtained from the energy balance of an elementary cylindrical 

shell of length dx and radii between r and r+dr, and its integration. For a constant heat flux at the pipe 

wall, temperature must grow linearly with pipe length according to a longitudinal energy balance; thence: 
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02
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u R T
T x T r x T x

a x

u RT T
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 
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
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  

 (12) 

 

where the longitudinal temperature gradient ∂T/∂x would be positive for heating (i.e. when the fluid is 

heated), and negative for cooling. As representative temperature at a cross-section, the 'mixing-cup 

average' or 'bulk temperature', defined by: 
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 0

0

( ) ( )2

( ) 2

R

b R

u r cT r rdr
T

u r c rdr

 

 




 (13) 

 

is used, since the interest is in the energy balance, 

     , , d d ( )2 d ( ) / dw mean b meanQ hA T T mc T x u r rdr c T r x      . In the present case of laminar flow: 
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        
2 2 2

0
0 0

7 d 7 d 11 d

96 d 48 d 48 d

m m
b w

u R u R u RT T T
T x T x T x T x

a x a x a x
        (14) 

 

Thus, Newton's law of cooling,   nq h T T k T     , applied to our heat-convection problem in pipes, 

gives: 

 

  
2

0

11 d

48 d 2

m m
w b

r Ry

u R u RT T T T
q h T T k k h k

y r a x a x

  
       
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24 48

4.36
11 11

D

k
h Nu

R
      (15) 

 

If, instead of a constant heat flux along the pipe walls, a constant wall temperature were assumed, the 

result would had been NuD=3.66. An order of magnitude analysis of the heat equation, ucT/x=aT/y2, 

and the energy balance equation, m cT/x=u(D2/4)cT/x=hDT, would have provided already a 

NuD-value of order unity. 

 

A final remark on laminar flow in pipes is that the temperature profile (the associated viscosity change) 

gives way to a small distortion of the parabolic velocity profile of isothermal laminar flows, making it 

more flat in the case of liquid heating (or gas cooling), or more lobe-like in the case of liquid cooling (or 

gas heating). 

Fully developed turbulent flow 

Turbulent flow is more difficult to model. Little more than Reynolds analogy between friction and heat 

convection, Nu=(cf/2)Re, (or Sh=(cf/2)Re for solutal convection) can be analytically deduced, what is not 

meagre, since measurements of pressure loss in pipes (not difficult to perform) then allow the 

computation of thermal and solutal transfer rates. Reynolds analogy is based on the similarity between 

momentum, heat, and mass transfer from the general balance equations: 

 

 
00 0

2 2 2DD D 1 1 1
, ,

D D D

iwp
i i

i i

i i

y yv T v T
v a T D y

t t t v a T D y






    
        

 
  (16) 
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which, with the definitions of  (or f, the Darcy or Moody friction factor, not to be confused with cf, the 

Fanning factor): 

 

 
2

2 21 1
, , 4

2 2 4
t f f t f

L D
p v c v F p DL c

D


               (17) 

 

and the definition of the convective coefficients, finally yields: 

 

 

2 2

,

1

1 1 2 2 2
2 2

w w

fw w
f f

f

k T ThD Nu
Nu h a a T Nu

a ak T T D
NuT D

v v vc v vc cc Re Prv vv v


     

  
    

            



  (18) 

 

known as modified Reynolds analogy, Nu=(cf/2)RePr=(/8)RePr. However, the most used Pr-correction 

to Reynolds analogy is Colburn-Chilton analogy. 

Reynolds analogy and Colburn-Chilton's analogy between friction and heat flux 

As just stated above, Osborne Reynolds, in 1874, was the first to make use of the mathematical similarity 

between the momentum equation and the energy equation in convection. However, the most widely used 

analogy is the one due to Colburn and Chilton (1934): 

 

 
1 3

8
D DNu Re Pr


 , and similarly  

1 3

8
D DSh Re Sc


 .  (19) 

 

because this Prandtl-number correction is more accurate than the one from (18), as was deduced before, 

for the laminar boundary layer over a flat plate. 

 

The friction factor for fully developed flow in circular pipes, as a function of Reynolds number ReD and 

relative wall roughness, /D, is shown in Fig. 4, first presented by L.F. Moody, in 1944 (e.g. ≈2·10-6 m 

in glass or plastic pipes, ≈0.1·10-3 m in uncoated steel and galvanised iron, or ≈1·10-3 m in concrete). 

This can be applied to non-circular ducts by using the equivalent hydraulic diameter: Dh=4A/p. Notice 

that instead of the Darcy friction factor , the Fanning friction factor cf=/4 is often used, and sometimes 

a so-called Colburn j-factor, j≡cf/2; as it might appears that the symbol f is used in some texts for the 

Fanning friction factor and in some others for the Darcy friction factor, it is suggested to always make a 

quick check, for instance on the laminar friction factor in pipes (Hagen-Poiseuille equation), that reads 

=64/Re or cf=16/Re, according to which of the definitions in (17) is used. 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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Fig. 4. Darcy friction factor f (also named ) for fully developed flow in circular pipes (Moody diagram). 

  

Some empirical correlations for fully-developed forced-flow in pipes and ducts are compiled in Table 2 

for both, friction factor, and heat convection; fluid properties should be evaluated at an average bulk 

temperature (mean value between inlet and outlet values), but they are often evaluated with inlet values 

(and later iterated, if any, after outlet values have been computed). The required pumping power to force 

the flow can be computed from 
P( )W m p   , with P being the pump efficiency, and p=cK(1/2)v2 

being the total pressure loss in the circuit; the global pressure-loss coefficient cK=L/D+cK,i should 

account for the whole pipe length, L, plus every flow restriction, cKi: bends, valves, filters, change of 

diameter or shape (including suction from or discharge to reservoirs). 

Empirical correlations for forced convection 

We here restrict to internal pipe flow; flow around bodies have been presented above, and flow over flat 

plates (forced flow; natural flow is covered here below) can be found under Boundary layer flow. 

 

Table 2. Heat convection correlations for fully-developed forced-flow in pipes. 

Configuration Friction factor (17) Heat convection 

Circular pipe, 

laminar flow, 

(ReD<2300) 

 

Hagen-Poiseuille (1839): 

64

DRe
   

For short pipes (entry length included): 

64
1.2

D

D

Re L
    

NuD,T=3.66, NuD,q=4.36 

Sieder-Tate (1936): 
0.141 3

1.86 b
D

w

D
Nu RePr

L





  
   

   
 

valid for RePrD/L>10 and  

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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valid for 0.05e
D

LL
Re

D D
   ,

0.05
e th

D

LL
Re Pr

D D
   

Circular pipe, 

turbulent flow, 

(ReD>2300) 

Smooth pipe (ReD<0.2·106): 

1 4

0.32

DRe
   

Petukhov (1970): 

 
2

1

0.79ln 1.64DRe
 


 

Colebrook (1939): 

10

1 2.5
2log

3.7
D

D Re



 

 
    

 
 

Haaland (1983): 
1.11

10

1 6.9
1.8log

3.7 DD Re





  
       

 

Fully turbulent (ReD/D>3500): 

10

1
1.1 2log

D




   

valid for 1 41.38e
D

LL
Re

D D
   

Dittus-Boelter (1930), Colburn (1933): 
0.80.023 n

D DNu Re Pr  

n=0.4 if dTb/dx>0, n=0.3 for cooling 

0.6<Pr<160, ReD>10 000 and  

, 1 41.38
e th

D

LL
Re

D D
   

 

For liquid metals: 

 
0.8

5 0.025D DNu Re Pr   

Non-circular pipe, 

laminar flow, 

(ReD<2300) 

Square pipe: 
57

DRe
   

Rectangular duct 1:4: 
73

DRe
   

Thin annulus or slots: 
96

DRe
   

Square pipe: NuD,T=2.98, NuD,q=3.61 

 

Rectangular duct 1:4: NuD,T=4.44, 

NuD,q=5.33 

 

Thin annulus or slots: NuD,T=7.54, 

NuD,q=8.24 

 

One of the most used correlations in heat transfer is the Dittus-Boelter equation: 0.80.023 n

D DNu Re Pr  

(with n=0.3 when de fluid cools down, and n=0.4 when it heats up), applied to turbulent flow in pipes of 

L/D>10 at Re>104 and 0.6<Pr<160. Why this old correlation (1930) is so much used? The reason is that, 

although there are other more-precise fittings, this one applies to most practical problems, where pipes are 

much longer than the diameter, fluids are gases with Pr0.7 or non-metallic liquids (e.g. Pr=13 for water 

at 0 ºC and Pr=1.7 for water at 100 ºC), and they flow at not too-low speeds (e.g. for a pipe of D=1 cm 

internal diameter, with water flowing at 20 ºC with a speed of v=1 m/s, Re=vD/=1·0.01/10-6=104); and, 

above all, this is a simple equation (explicit and short) with only two parameters, in spite of using 

floating-point fittings (though sometimes a 4/5 is used instead of 0.8 in the Re exponent). 

 

A note on initial and boundary conditions is pertinent. All empirical correlations assume unidirectional 

steady flow with either constant temperature at the wall or constant heat flux at the wall. In practice, the 

flow may have some non-one-dimensional components (azimuthal or radial secondary flows, due to 

entrance effects from bends or obstructions), the flow may be unsteady (e.g. the setup may be heating up), 

and neither constant temperature nor constant heat flux can be imposed in practice (but a combined heat-

transfer problem through the pipe wall with an external fluid or solid environment).  

https://en.wikipedia.org/wiki/Nusselt_number#Dittus-Boelter_equation
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Sometimes, the internal wall of pipes and ducts are intentionally modified, trying to increase heat and 

mass transfer, for instance by introducing helical ribs or fins. Additionally, the internal wall of pipes and 

ducts are usually unintentionally modified by dirt growth (fouling) during operation, what imposes an 

additional resistance to fluid flow, heat transfer, and solutal transfer. 

Natural convection 

Natural convection is the fluid flow originated by gravity forces acting on non-uniform-density fluids; the 

density changes may be due to thermal or to solutal gradients. Many different natural-convection 

configurations are of interest, from the simplest hot/cold vertical plate in a fluid medium, to external 

convection around hot/cold bodies, or internal convection within hot/cold enclosures (non-isothermal). 

Boundary layer on a hot vertical plate 

The boundary layer on a hot vertical plate is a canonical thermo-fluid-mechanics problem. A semi-infinite 

vertical wall is shown in Fig. 5 (it must extend upwards if it is hot, or downwards if it is cold), maintained 

at constant temperature, Tw, and immersed in a dilatable fluid (with thermal expansion coefficient ), at 

temperature T∞ far from the wall, in a gravity field, g, giving rise to a boundary-layer flow of thickness , 

which starts at the entry border and grows along the length of the plate, with the longitudinal velocity 

growing from u=0 at the wall, to a maximum value within the boundary layer, and finally decreasing to 

u=0 at the outer edge of the layer (Fig. 5); the outer fluid is at rest except for the very small entrainment 

flow implied by the boundary layer growth. 

 

Fig. 5. Boundary layer flow near a vertical plate (one side); notice the choice of x and y coordinates. 

 

The analysis of this boundary-layer flow entirely follows the study made aside for the forced convection 

over a flat plate. As before, the initial orderly shear flow (laminar flow), after some length usually taken 

to be Ltr103[a/(gT)]1/3 (i.e. corresponding to Ra=109), transforms into a less-ordered turbulent flow 

with random velocity-fluctuations, with a thicker boundary layer and a much thinner laminar boundary 

layer remaining close to the wall (Fig. 5). 

 

The equations governing the flow near the vertical plate, assumed steady and incompressible except for 

the momentum buoyancy term (Boussinesq model), are the following (notice the choice of coordinates in 

Fig. 5, for similarity with the forced boundary layer problem studied before): 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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 Mass balance (continuity):  

 

 0 0 m mu vu v
v

x y L 

 
      

 
 (20) 

 

 where um and vm are maximum or mean velocity values (here we do not have an imposed 

value u∞), showing, as before, that the velocity field is basically one-dimensional. 

 

 Momentum balance:  

 

   2D
1

D
z

v p
g T T i v

t
 





          →  

      
22

2 2
or    m mu uu u u

u v g T T g T T g T T
x y y L

    


  

  
        

  
(21) 

 

 since one cannot say a priori which term, um
2/L or um/2 (continuity shows that the two 

convective terms are of the same order) should balance the driving term here, gT. 

 

 Energy balance:  

 

 
2

2

2 2

D

D
m

p T

T T T v T T
a T u v a u a

t c x y y L



 

    
       

  
 (22) 

 

 since, again, continuity shows that the two convective terms are of the same order). The 

energy balance gives the order of magnitude of the velocities generated, um, and its substitution in 

the momentum balance (in the first of the two comparisons in (21)): 

 

    
2 2

4

2/m

T

m Tu aLu a L
g T T g T T

L


 


 


      (23) 

 

shows the convenience of defining the so called Rayleigh number Ra, and finally gives: 

 

  
 

43
1 4

with
T

g T T L a L
Nu Ra Pr Ra

a



  

  
    

 
 (24) 

 

since the Nusselt number is Nu≡hL/k≈L/T. If the second of the two comparisons in (21) had been 

followed, the result would had been Nu≈Ra1/4 instead of Nu≈(RaPr)1/4. The difference between the 

two comparisons is that the first one in (21) is valid for Pr<<1 (liquid metals), for which a more 

accurate correlation is Nu=0.57(RaPr)1/4, whereas the second one applies for Pr>>1 (in practice 

good enough for Pr>0.7), where a more accurate correlation is Nu=0.59Ra1/4, valid in the range 

104<Ra<109. A compilation of correlations is later shown in Table 3. 
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Simon Ostrach found in 1953 an exact solution to the laminar flow near a hot vertical plate, in a similar 

manner as Blasius' solution for the forced boundary-layer flow, by introducing a self-similar variable, , 

defined now by: 

 

 
 

1 4 3

2
, with

4

x
x

g T T xGry
Gr

x






 
  

 
 (25) 

 

where Gr is the so-called Grashof number (Ra=GrPr). This similarity variable transforms the PDE 

system (continuity, momentum, and energy equations) into an ordinary differential equation system in 

two auxiliary functions, f and , f being related to the stream function, (x,y)=f()(4(Grx/4)1/4), such that 

u=/y and v=/x), and being ()≡(TT∞)/(TwT∞). Similarly to Eq. (21) in forced-flow 

boundary layer, now one gets: 

 

 

23 2

3 2 0

0

2

2 0

d d d d d
3 2 0, with 0, 0, 0

d d d d d

d d d
3 0, with 1, 0

d d d
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Pr f



 






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  


  



 





 
        

  



    


 (26) 

 

which, although not analytically integrable, has a universal solution numerically computed, and if the Pr-

dependence is empirically fitted, one gets (see Fig. 5): 

 

 
 

1 4

1
11 4

3.93 0.95( )( )
, with ( )

x

Prf Prx
f Pr

x Gr Pr

 
   (27) 

 

what means a (x)  x1/4 growth-rate for the boundary-layer thickness. In a similar way, fitting the lowest-

degree polynomial u(y)=c0+c1y+c2y
2+c3y

3 to the boundary conditions u(0)=0, u()=0, and u'()=0, one 

gets: 

 

 
 

 

2

2 2

, 5.17
( ) 1 , with ( )

/ ( ) ( ) 0.95
x

u x y y y
f Pr Gr f Pr

x x x Pr  

 
   

 
 (28) 

 

i.e. a cubic profile for the longitudinal speed. And for the temperature conditions, T(0)=T0, T()=T, a 

parabolic profile is good enough: 

 

 
 

2
,

1
( )w

T x y T y

T T x





  
  

  
 (29) 

 

Finally, the heat-transfer rate in terms of Nusselt number is: 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
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 
1 4

3 3 1 4

0.53
( ) , with ( )

0.61 1.22 1.24
x x

Pr
Nu f Pr Gr f Pr

Pr Pr

 

 
 (30) 

 

The above solution applies to all Prandtl numbers (including liquid metals) within the laminar regime, 

usually valid up to Ra≈109, beyond which the layer becomes turbulent. 

 

Sometimes, natural convection superposes to forced convection and, when both are of similar magnitude, 

the motion strongly depends on whether they oppose or contribute to each other. For external flow with 

Pr1, the parameter Gr/Re2 marks which type of convection is dominant: natural if <<1, mix if 1 and 

forced if <<1. Often, the Graetz number, Gz≡RePrD/L, is introduced in mix-convection correlations. 

Empirical correlations for natural convection 

A small tilting in the hot vertical plate analysed before, already causes great changes in the flow, since the 

boundary layer detaches at several places along the upper side of the plate (if hot; the lower side in a cold 

plate), forming three-dimensional patches due to flow instabilities. That is why most heat and mass 

natural-convection correlations are empirical fittings from experimental data. Table 3 gives a compilation. 

 

Table 3. Convective heat correlations for natural convection. 

Configuration Heat convection 

Isothermal vertical wall, laminar flow 

Rax<109, any Pr.  

1 4
1 4

1 4

0.53

0.61 1.22 1.24
x x

Pr
Nu Ra

Pr Pr



 
 

Isothermal vertical wall, laminar or turbulent 

flow,  

any Ra, any Pr (Churchill-Chu-1975), 

NuL≡∫ Nuxdx/L, 

also valid for vertical cylindrical walls up to 

x<D/2, 

 i.e. if L/D < GrL
1/4/35, both for internal and 

external flows.

2

1 6

8 27
9 16

0.387
0.825

0.492
1

L
L

Ra
Nu

Pr

 
 
 

  
   
        

 

Limited range: 
1 4 4 90.59 if 0.6  and  10 10L LNu Ra Pr Ra     

1 3 9 130.1 if 0.6  and  10 10L LNu Ra Pr Ra     

Isothermal inclined wall: 

Hot lower side: as vertical but with g→gcos 

(<60º) 

Hot upper side with detached plumes, smaller 

convection. 

Cold upper side: as vertical but with g→gcos 

(<60º) 

Cold lower side with detached plumes, smaller 

convection. 

 

Isothermal horizontal wall (upper or lower 

side) 

The characteristic length, L, is the exposed 

area divided by the perimeter, L≡A/p. 

Notice that, for a one-side heated horizontal 

plate, nearly twice as much heat can be 

Heat convected from hot upper side, or cold lower side: 
1 4 4 70.54 if 10 10L LNu Ra Ra    
1 3 7 110.15 if 10 10L LNu Ra Ra    

Heat convected from cold upper side, or hot lower side: 
1 4 5 110.27 for 10 10L LNu Ra Ra    
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dissipated if the heated side is the upper one.  

Horizontal cylinder (external flow) 

 

RaD<109 (laminar flow), Pr>0.7 (McAdams-1954): 
1 40.53D DNu Ra  

RaD>109 (turbulent flow), Pr>0.7 (McAdams-1954): 
1 30.13D DNu Ra  

RaD<109 (laminar flow), Pr<0.01 (Hyman et al.-1953): 

 
1 4

0.53D DNu Ra Pr  

RaD<1012, any regime, any Pr (Churchill-Chu-1975): 
2

1 6

8 27
9 16

0.387
0.6

0.56
1

D
D

Ra
Nu

Pr

 
 
 

  
   
        

 

Vertical duct (internal flow). Chimneys 

  4

510
g T T R

Ra
aL






   

and Pr1. R is hydraulic radius, L is height. 

1

1

40.8

m m m

R

Ra
Nu Ra

C

    
     
    

 

Circular duct (radius R): C=16, m=1. 

Square duct (side s=2R): C=14, m=1. 

Slot duct (gap width w=R): C=24, m=2. 

Sphere (external flow) 

RaD<1011, any Pr>0.5 (Churchill-1983). 

1 4

4 9
9 16

0.59
2

0.47
1

D
D

Ra
Nu

Pr

 
  
     

 

Sphere (internal flow) 

Pr>0.5 (Kreith-1970). 

1 4 4 80.59 for 10 10D D DNu Ra Ra    
1 3 9 120.13 for 10 10D D DNu Ra Ra    

Horizontal rectangular enclosure  

(Internal steady flow, with two opposite 

adiabatic walls, and a T between the other 

two walls at separation L, and NuL≡hL/k): 

-Heated from above (stable gradient; no fluid-

flow; NuL=1) 

-Heated from below with RaD<1708, (no fluid-

flow; NuL=1) 

-Heated from below with 1708<RaD<108 and 

Pr>0.7, (flow instability; onset of convection 

at RaD=1708). 

 

1 31708
1 1.44 1 1

18

L
L

L

Ra
Nu

Ra

 

   
       

  
 

[]+ means that these terms must only be accounted if 

positive (set to 0 if negative). Holland et al. (1976). 

Vertical rectangular enclosure 

 (Internal steady flow, with a T between the 

two vertical walls at separation L, and the 

adiabatic walls at separation H), NuL≡hL/k. 

 

1<H/L<2, any Pr, RaL>103(0.2+Pr)/Pr: 
0.29

0.18
0.2

L
L

Pr Ra
Nu

+ Pr

 
  

 
 

2<H/L<10, any Pr, RaL<1010: 
0.28 0.25

0.22
0.2

L
L

Pr Ra L
Nu

+ Pr H

   
    

  
 

10<H/L<40, any Pr>1, 104<RaL<107: 
0.3

0.25 0.0120.42L L

L
Nu Ra Pr

H

 
  

 
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Inclined rectangular enclosure 

(Internal steady flow, with a T between the 

two closest walls at separation L, tilted an 

angle  from the vertical, and the adiabatic 

walls at separation H), NuL≡hL/k. 

Fluid flow changes beyond a critical angle 

cr(H/L): 

H/L= 1 3 6 12 >12 

cr 25º 53º 60º 67º 70º 

 

 

0<<cr, H/L<12, Pr>0.7 

 0 4
0

90º

sin

cr

crcr

Nu
Nu Nu

Nu

 


 
 








 
  

 
 

0<<cr, H/L≥12, Pr>0.7 

 
1.6

1708 sin(1.8 )1708
1 1.44 1 1

cos cosL L

Nu
Ra Ra





 


  

           
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1
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cr<<90º, any H/L, Pr>0.7 

 
1 4

90º sinNu Nu    

Concentric cylindrical enclosure 

(internal steady flow, with a T between the 

two surfaces, with axial width W), 

L≡(DoDi)/2, 
 

2

ln

eff

o i

k W T
Q

D D

 
  

Pr>0.7, 102<FcylRaL<107 (keff=k for <102) 

1 4

0.386
0.86

eff cyl Lk Pr F Ra

k + Pr

 
  

 
,  

 

   

4

53 3 5 3 5

8 ln o i

cyl

o i i o

D D
F

D D D D 
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Concentric sphere enclosure 

(internal steady flow, with a T between the 

two surfaces),  

L≡(DoDi)/2, 
2 eff o i

o i

k D D T
Q

D D

 



 

Pr>0.7, 102<FsphRaL<104 (if <102, keff=k) 

1 4

0.74
0.86

eff sph Lk Pr F Ra

k +Pr

 
  

 
,  

   
54 7 5 7 52

o i
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o i i o

D D
F

D D D D 


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Empirical correlations for other configurations can be found in the literature; e.g. other enclosure 

geometries, combined natural and forced convection, convection in fix porous media, convection in 

fluidized beds, convection in vibrating systems, convection with very high velocities, convection in 

rarefied gases, etc. Convection with phase change, and Heat exchangers, are separately considered. 

Heat transfer fluids 

There is a great variety of fluids used to convect excess of deficit of thermal energy from an origin 

location (source) to a destination location (sink). According to the purpose (temperature difference) there 

are two possible applications (might be thought of as high-T and low-T fluids, relative to T-environ): 

 Heating fluids (used to heat up a load by convection). 

 Cooling fluids (used to cool loads). The word 'coolant' is often used for cooling fluids and, by 

extension, to design any heat transfer fluid. 

 

Heat transfer fluids can be grouped according to their properties as: 

 Gases. Air is by far the most common heat transfer fluid. 

 Liquids. Water is the first choice, but it has some handicaps that may require other working 

fluids; e.g. water cannot be used below 0 ºC or above 100 ºC (pressurised water may work up to 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Convection%20with%20phase%20change.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20exchangers.pdf
http://en.wikipedia.org/wiki/Coolant
http://imartinez.etsiae.upm.es/~isidoro/dat1/eGAS.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/eLIQ.pdf
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Ttr=374 ºC); it is biologically and chemically active (corrosive, prone to contamination), may be 

electrically conducting (risk of short-circuits), etc. 

 Phase-changing fluids. Most liquids may be used as two-phase heat-transfer fluids; the most used 

are water/steam, ammonia (toxic), hydrocarbons (flammable), and halocarbons. 

 

See Temperature and pressure effects on fluid properties, aside. 

Air and other permanent gases 

Ambient air is the omnipresent convection fluid in all terrestrial applications, either by natural convection 

due to buoyancy, or by forced convection with a fan (or within a wind). Any electrical appliance (e.g. the 

computer I am working with now) serves to illustrate the point. 

 

Air is a free commodity, clean, non-flammable, non-corrosive, and it does not boil or freeze (well, 

frosting may be a problem with humid air, and any fluid would condense at a low-enough temperature). 

However, it has a very low thermal conductivity and density. Hydrogen or helium are used when higher 

conductivity gases are needed. Sulfur hexafluoride, SF6, is used for cooling and insulating of some high-

voltage power systems (circuit breakers, switches, some transformers, etc.). 

Water 

Tap water is much used as a heat transfer fluid because of its availability and good thermal properties: it 

has good thermal conductivity, a large thermal capacity, low viscosity, and presents no hazard (usually 

just a spillage problem). Unfortunately, its operating range poses some restrictions at high temperatures 

(can only work up to 100 ºC at normal pressure, and up to 370 ºC at some 22 MPa), and a severe 

restrictions at low temperatures (can only work down to 0 ºC, with negligible pressure-influence). 

Besides, natural solutes like dissolved gases and salts may have detrimental effects (e.g. corrosion and 

depositions). To palliate these problems, distilled water can be used. 

Water antifreeze mixtures 

To solve the lower-range operating-temperature handicap of pure water, several antifreeze mixtures are 

commonly used, as water/alcohol mixtures (water/propylene-glycol or water/ethylene-glycol, the latter 

being toxic), and water/salt brines. A detailed study can be found in Solutions. 

Silicone oils 

Silicone oils are poly-dimethyl-siloxanes, oily synthetic fluids with a very wide operating temperature 

range (say from 40 ºC to 320 ºC), and a wide range of viscosities. They are non-corrosive and long-

lasting. However, their thermal conductivity and thermal capacity are poor. 

Hydrocarbon oils 

They started to be high-temperature distillates from crude-oil, but most of the present mineral oils are 

synthetic. Hydrocarbon oils are very good at high operating temperatures (the can work say from 30 ºC 

to 400 ºC), but a higher viscosity and lower thermal capacity than water. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Heat%20convection.%20Boundary%20layer%20flow.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/eGAS.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.htm
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Fluorocarbon oils 

Fluorocarbons (FC, also named perfluorocarbons, PFC), are synthetic halocarbons with just fluorine as 

halogenating atom. They show remarkable properties as thermal, chemical, and biologically stability, i.e. 

wide useful temperature range, good phase-change properties, non-corrosive, electrical insulation, etc.  

Phase-change fluids. Refrigerants 

Most liquids may be used as two-phase heat-transfer fluids. We restrict here to phase changes between 

fluid phases (for fluid-to-solid phase-change materials, PCM, see Hot pads and cold pads), and in 

particular to refrigerant fluids (working fluids used in refrigeration and heat pumps).  

 

The working substances most used in refrigeration are:  

 Synthetic refrigerants, better known as halogenated hydrocarbons, from the old and retired 

chlorofluorocarbons (CFC), to hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC), 

and perfluorocarbons (PFC). 

 Natural refrigerants, usually split in: 

o Hydrocarbons (propane, n-butane, iso-butane...); they are flammable. 

o Others, notably ammonia and carbon dioxide.  

Liquid metals 

Liquid metals have thermal conductivity one or two orders of magnitude larger than common liquids, but 

its use poses severe technological problems, a major one being the scarcity of suitable liquid metals for 

work at room temperatures; practically the only important application of liquid metals as heat convection 

fluids is the sodium-potassium mixture used in nuclear-engineering cooling. 

Nanofluids 

A new approach to enhance heat convection is to use a colloidal dispersions of solid particles (in the 

nanometric range, i.e. d<10-7 m) into ordinary liquids, what is named ‘nanofluids’. The small particle size 

prevents settling and clogging, and the apparent thermal transmitance of the fluid gets highly improved 

even when minute concentrations are used, particularly in the laminar range, the reason being still 

unclear. Typical nanoparticles used are carbon derivatives (graphite, carbon nanotubes, metal carbides), 

metallic oxides (Al2O3, CuO, TiO2…), in both cases up to 5% in weight concentration, or pure metals 

(Cu, Al, Ag, Au…) in much smaller concentrations (<0.1%). Base liquids may be water, antifreezers, 

oils, or bio-fluids. Some additive to stabilise the dispersion may be needed (e.g. succinonitrile is added to 

stabilise carbon-nanotubes in oils). Heat-transfer enhancement grows with particle concentration 

(typically up to 50% of the base fluid at room temperature), and increases with operating temperature. 

 

Back to Heat and mass transfer 

Back to Thermodynamics 

 

http://en.wikipedia.org/wiki/Phase-change_material
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Hot%20pads%20and%20cold%20pads.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c18/Refrigeration.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/index.html

