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MASS TRANSFER 

WHAT IT IS AND WHAT IT ISN'T 

The subject of Mass Transfer studies the relative motion of some chemical species with respect to others 

(i.e. separation and mixing processes), driven by concentration gradients (really, an imbalance in 

chemical potential, as explained in Entropy). Fluid flow without mass transfer is not part of the Mass 

Transfer field but of Fluid Mechanics. 

 

Heat transfer and mass transfer are kinetic processes that may occur and be studied separately or jointly. 

Studying them apart is simpler, but it is most convenient (to optimise the effort) to realise that both 

processes are modelled by similar mathematical equations in the case of diffusion and convection (there is 

no mass-transfer similarity to heat radiation), and it is thus more efficient to consider them jointly. On the 

other hand, the subject of Mass Transfer is directly linked to Fluid Mechanics, where the single-

component fluid-flow is studied, but the approach usually followed is more similar to that used in Heat 

Transfer, where fluid flow is mainly a boundary condition empirically modelled; thus, the teaching of 

Mass Transfer traditionally follows and builds upon that of Heat Transfer (and not upon Fluid 

Mechanics). In fact, development in mass-transfer theory closely follows that in heat transfer, with the 

pioneering works of Lewis and Whitman in 1924 (already proposing a mass-transfer coefficient hm 

similar to the thermal convection coefficient h), and Sherwood's book of 1937 on "Absorption and 

extraction". Even more, since the milestone book on "Transport phenomena" by Bird et al. (1960), heat 

transfer, mass transfer, and momentum transfer, are often jointly considered as a new discipline. 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Entropy.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
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As usual, the basic study first focuses on homogeneous non-reacting systems with well-defined 

boundaries (not only in Mass Transfer, but in Heat Transfer and in Fluid Mechanics), touching upon 

moving-boundary problems and reacting processes only afterwards. As for the other subjects, it is based 

on the continuum media theory, i.e. without accounting for the microscopic motion of the molecules (so 

that field theory and the fluid-particle concept are applied here too). Diffusion theory only applies to 

molecular mixtures (d<10-8 m); for colloids and suspensions (10-8..10-5 m), Brownian theory must be 

applied, and for larger particles (>10-5 m) Newtonian mechanics applies. 

 

Notice that we only consider here mass diffusion due to a concentration gradient, what might be called 

concentration-phoresis in analogy to other mechanisms of mass diffusion like thermo-phoresis (Soret 

effect), piezo-phoresis (diffusion due to a pressure gradient), or electrophoresis (diffusion due to a 

gradient of electrical potential applied to ionic media). 

 

Traditionally, the field of Mass Transfer has been studied only within the Chemical Engineering 

curriculum, except for humid-air applications (evaporation) and thermal desalination processes, which has 

been always studied in Mechanical Engineering. But mass transfer problems are proliferating in so many 

circumstances, especially at high temperatures (drying, combustion, materials treatment, pyrolysis, 

ablation...), that the subject should be covered on different grounds to encourage effective 

interdisciplinary team-work  

WHAT IT IS FOR. APPLICATIONS 

Applications of Mass Transfer include the dispersion of contaminants, drying and humidifying, 

segregation and doping in materials, vaporisation and condensation in a mixture, evaporation (boiling of a 

pure substance is not mass transfer), combustion and most other chemical processes, cooling towers, 

sorption at an interface (adsorption) or in a bulk (absorption), and most living-matter processes as 

respiration (in the lungs and at cell level), nutrition, secretion, sweating, etc.  

 

A common process to separate a gas from a gaseous mixture is to selectively dissolve it in an appropriate 

liquid (this way, carbon dioxide from exhaust gases can be trapped in aqueous lime solutions, and 

hydrogen sulfide is absorbed from natural-gas sources; when water vapour is removed, the absorption 

process is called drying. Stripping is the reverse of absorption, i.e. the removal of dissolved components 

in a liquid mixture. Distillation is the most important separation technique. 

HOW TO STUDY IT. SIMILARITIES AND DIFFERENCES BETWEEN MASS TRANSFER AND 

HEAT TRANSFER 

Mass Transfer education traditionally follows and builds upon that of Heat Transfer because, on the one 

hand, mass diffusion due to a concentration gradient is analogous to thermal-energy diffusion due to a 

temperature gradient, and thus the mathematical modelling practically coincides, and there are many 

cases where mass diffusion is coupled to heat transfer (as in evaporative cooling and fractional 

distillation); on another hand, Heat Transfer is mathematically simpler and of wider engineering interest 

than Mass Transfer, what dictates the precedence. But there are important differences between both 

subjects. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixture%20settling.pdf
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 Radiation. First of all, from the three heat transfer modes (conduction, convection, and radiation), 

only the two first are considered in mass transfer (diffusion and convection), radiation of material 

particles (as neutrons and electrons) being studied apart (in Nuclear Physics). Notice, by the way, 

that the word diffusion can be applied to the spreading of energy (heat diffusion), or species (mass 

diffusion), or even momentum in a fluid or electric charges in conductors, but the word 

conduction is more commonly used than heat diffusion (whereas mass conduction is rarely used). 

 Solids versus fluids. Heat Transfer starts with, and focuses on, heat diffusion in solids, which have 

higher thermal conductivities than fluids, the latter being considered globally through empirical 

convective coefficients, whereas Mass Transfer focuses on gases and liquids, which have higher 

mass diffusivities than solids. The explanation for such a difference is that heat conduction 

propagates by particle contact (for the same type of particles, the shortest separation the better), 

whereas mass diffusion propagates by particles moving through the material medium (for the 

same type of particles, the largest voids the better). Moreover, Heat Transfer problems in solids 

are simple and relevant to many applications, whereas Mass Transfer problems in solids are of 

much lesser relevance, and Mass Transfer problems in fluids are much more complicated because 

the simplest mass-diffusion problems are of little practical interest, convection within fluids being 

the rule (fluids tend to flow). When diffusion in solids is wanted, as in doping silicon substrates in 

microelectronics, or in surface diffusion of carbon or nitrogen in steel hardening, high temperature 

operation is the rule (diffusion coefficients show an Arrhenius' type dependence with 

temperature).  

 Slowness. Thermal diffusivities decrease from solids to fluids, with typical values of a10-4 m2/s 

for metals and a10-5 m2/s for non-metals, down to a10-5 m2/s for gases and a10-7 m2/s for 

liquids. On the contrary, mass diffusivities decrease from fluids to solids, with typical values of 

Di10-5 m2/s for gases and Di10-9 m2/s for liquids, down to Di10-12 m2/s for solids. 

 Bulk flow. There is no bulk flow in heat diffusion (either within solids or fluids), whereas there is 

always some bulk flow associated to diffusion of species (except in the rare event of counter-

diffusion of similar species); i.e. mass diffusion generates mass convection, in general. 

 Number of field variables. One may consider just one heat-transfer function, the temperature field 

T (the heat flux is basically the gradient field), but several mass-transfer functions must be 

considered, one mass fraction, yi, for each species i=1..C (C being the number of distinct chemical 

species), although most problems are modelled as a binary system of just one species of interest 

diffusing in a background mixture of averaged properties.  

 Continuity at interfaces. Mass-transfer boundary conditions at interfaces are more complex than 

thermal boundary conditions, because there are always concentration discontinuities, contrary to 

the continuous temperature dictated by local equilibrium (chemical potentials are continuous at an 

interface, not concentrations).  

 Diffusion 'uphill'. Besides the effect of coupled fluxes, it is important to realise that mass diffusion 

can be from a low concentration within a condensed medium towards a high concentration within 

a more disperse medium, because, as said, it is not concentration-gradient but chemical-potential-

gradient, what drives mass diffusion (e.g. see Diffusion through a wall, below). 
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Forces and fluxes 

Mixing, i.e. decreasing differences in composition (really, in chemical potential) or temperature, is a 

natural process (i.e. it does not require an energy expenditure), driven by the gradients of temperature, 

relative speed and chemical composition (with the natural stratification in the presence of gravity or 

another force field).  

 

It is interesting to realise that the thermal and mechanical forces towards equilibrium have been harnessed 

to yield useful power (heat engines, wind and water turbines), but the chemical forces that drive mass 

transfer have not yet been rendered useful as energy source, no doubt because of its low specific energy 

(there has been proposals to built power plants driven by the difference in salt concentration at river 

mouths). 

 

The gradient of temperature, momentum and concentrations, give rise to corresponding fluxes in thermal 

energy, momentum and amount of species. The relation between forces and fluxes are the transport 

constitutive equations: Fourier law for Heat Transfer, Newton (or Stokes) law for Fluid Mechanics, and 

Fick law for Mass Transfer (to be presented below), and the purpose of the subject is to solve generic 

field balance equations (energy balance, momentum balance, and species balance), with the help of 

constitutive equations, and the particular boundary conditions and initial conditions. 

 

But before developing the theory, it must be understood that mixing is a slow physical process, if not 

forced by convection and turbulence, and even so. Many practical processes are limited by the difficulty 

to increase the mass transfer rate. An order of magnitude analysis shows that the relaxation time for 

diffusion-controlled phenomena (thermal, momentum, species) across a distance L is trelax=L2/a, where a 

is the diffusivity that, as explained below, is of order 10-5 m2/s in gases, what teaches that diffusion across 

a 1 m distance takes some 105 s, i.e. one whole day. Of course, everybody knows that heating one metre 

of air doesn't take one day, neither it takes so long for odours to travel one metre, or for putting in motion 

or arresting a gas; the explanation is that fluids are very difficult to keep at rest when perturbed, and the 

convection that develops greatly increases the mixing rate and lowers the required time. 

 

Thermodynamics teaches that, within an isolated system in absence of external forces, temperature, 

relative motion and chemical potential tend to get uniform, by establishing a thermal-energy flux, a 

momentum flux and a mass-diffusion flux, proportional (to a first approximation) to the gradients of 

temperature, velocity and concentration, that tend to equilibrate the system. Notice however that, besides 

those direct fluxes, other smaller cross-coupling fluxes may appear, as mass-diffusion due to a 

temperature gradient in a uniform concentration, or heat transfer due to a concentration gradient in an 

isothermal field, which, in the linear approximation, are related among them by Onsager's reciprocal 

relations. 

Specifying composition. Nomenclature 

Mass transfer may take place within gases, liquids, solids or through their interfaces, always involving a 

mixture, but mass diffusion in a gas is of main interest for two reasons: first, it is the best understood, and 
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second, it is the best diffusing medium (diffusion in liquids and solids is much slower). For that reason, 

and for simplicity, we start here with a gaseous (single phase) multi-component mixture. 

 

A mixture is any multi-component system, i.e. one with several chemical species. The thermodynamics of 

mixtures in general (gaseous, liquid or solid) has been considered under the heading Mixtures, mainly 

devoted to ideal mixtures. We assume true solutions, i.e. homogeneous solutions, and do not consider 

colloids and suspensions, treated under the heading Mixture settling. 

 

Although, from the theoretical point-of-view, molar fractions and concentrations should be preferred, the 

most common composition determinant in a single-phase mixture is the mass fraction, yi, or the mass 

density i. Only one of those parameters is needed, but all of them are made use of in practice, so a 

common (an tedious) task in mass-transfer calculations is to pass from one variable to another, based on 

their definitions: 
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The molar mass of the mixture is defined as Mm≡m/n=/c=ΣxiMi, although it is only used for gas 

mixtures. There are still other special variables in use to define a mixture composition, as air-to-fuel ratio 

and richness (equivalence ratio) in combustion problems. 

 

Exercise 1. Dry air can be approximated as a mixture of 79% N2 and 21% O2 by volume (meaning that, 

by letting 79 volumes of pure nitrogen to mix with 21 volumes of pure oxygen, without 

changes in pressure and temperature, i.e. by just removing the partition, we obtain 100 

volumes of a mixture closely resembling dry air). Determine other possible specifications of 

dry air composition, from (1-5). 

Solution. Assuming ideal gas behaviour, i.e. pV=nRT, at constant p and T, volumes V are proportional 

to amounts of substance, n, and thus volume percentage coincides with molar fractions (4); 

i.e., we can consider as data xN=0.79 and xO=0.21 (mind that subindices are just labels, not 

meaning atoms but molecules).  

 From (1), with MN=0.028 kg/mol and MO=0.032 kg/mol, one gets 

ΣxiMi=0.79·0.028+0.21·0.032=0.029 kg/mol, yN=0.79·0.028/0.029=0.77 and yN=0.23, 

indicating that the molar mass for the mixture is a weighted average of those of the 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixtures.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixture%20settling.pdf
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components, Mm≡m/n=/c=ΣxiMi=0.029 kg/mol, and that the heavier species shows a larger 

concentration-value in terms of masses than in terms of amounts of substance. 

 From (2) we get mass concentrations (mass densities) in terms of the mixture density, which 

depends on temperature and pressure; for T=288 K and p=100 kPa, we get for the density of 

air =1.21 kg/m3, and for the species N=0.77·1.22=0.93 kg/m3, and  O=0.23·1.22=0.28 

kg/m3. Notice that some authors use mi or wi instead of yi for mass fractions. 

 From (3) we can get molar concentrations, again depending on actual p-T values; with the 

previous choice, cN=N/MN=0.93/0.028=33 mol/m3, and cO=O/MO=0.28/0.032=9 mol/m3 (in 

total, c=cN+cO=p/(RT)=105/(8.3·288)=42 mol/m3). 

 Fro (5) we get the partial pressures, pN=xNp=0.79·105=79 kPa, and pO=xOp=0.21·105=21 kPa. 

 Finally notice that we can equally say that air has 0.79/0.21=3.76 times more nitrogen than 

oxygen, by volume (or amount of substance), or 0.770.23=3.29 times more nitrogen than 

oxygen, by mass. 

 

The finding of qualitative or quantitative composition in a mixture is known as chemical analysis, or 

simply 'the analysis'. We focus here on quantitative analysis, assuming the substances are already known. 

Most methods of concentration analysis are based on measuring mixture density (provided the density 

dependence on species concentration, mm(T,p,xi), is known beforehand by calibration), by one of the 

different techniques: 

 Absorption radiometry. By light transmittance (in the visible, infrared, or monochromatic).  

 Refractometry. By ray tracing. Refractive index varies almost linearly with density. 

 Gravimetry. Weighting a known volume of liquid. This is perhaps the easiest and quickest method 

to measure solution concentration, but requires sampling. 

 Resonant vibration. The natural frequency of an encapsulated liquid sample precisely metered 

depends on its mass. May be applied to a liquid flowing along a bend connected by soft bellows to 

the pipes.  

 Sonic velocimetry. Density is obtained from =E/c2, where E is the bulk modulus of the solution 

and c the sound speed through it. 

 Electric conductivity. This is the best method for very low concentration of electrolytic solutions. 

The measuring electrodes may be generic, or selective for some specific ion (e.g. Ca2+, NH4
+, Cl-, 

NO3
-). 

Specifying boundary conditions for composition 

Composition at boundaries or internal interfaces in a mixture usually shows a discontinuity, contrary to 

temperature in heat transfer problems, when continuity is the rule (except for the special topic of thermal 

joint conductance).  

 

The typical boundary conditions for a species concentration are, as for heat transfer, a known value of the 

function (imposed concentration or temperature, respectively), or a known value of its gradient (imposed 

species flux or heat flux, respectively), the special case in the latter being the impermeable interface or 

adiabatic wall, respectively; here: 
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 impermeable interface: 
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n  being the unit normal vector to the interface. Imposing a non-zero mass flux, or a given concentration 

value, is done as in Heat Transfer, i.e. by providing large sources of the chemical species (a solid chunk, a 

liquid pool, a gas reservoir), similarly to large metal blocks to specify the temperature at a wall. Local 

thermodynamic equilibrium then teaches that the temperature of the system near the wall is equal to that 

of the wall, but the same is not true for concentrations, where local equilibrium implies equality of its 

chemical potential, not of its concentration.   

 

The boundary condition in a gas mixture may be another gas phase, as when mixing along a tube 

connected to a large reservoir of a given gas; if one assumes that the large reservoir is well-stirred, thence, 

the boundary condition for the gas mixture in the tube may be approximated by the known concentration 

at the reservoir. 

 

For a gas mixture in contact with a condensed phase, the typical boundary conditions for a species 

concentration, assuming ideal mixtures, is Raoult's law (deduced in Mixtures): 
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where Antoine's fitting coefficients for the vapour pressure curve have been explicitly shown (see Phase 

Change for an explanation). Notice that sublimation vapour-pressure data should be used when the source 

is solid, e.g. when ice is the source of water vapour, instead of liquid water. For instance, the boundary 

value for water-vapour diffusion in ambient air close to a water pool at 15 ºC is xi,vap=0.017, 

corresponding to the two-phase equilibrium pressure of pure water at 15 ºC: 1.7 kPa. When gases are 

sparingly soluble, Henry's law must be used instead of Raoult's law (see Solutions). 

 

Exercise 2.  Find the concentration of carbon dioxide at a water surface at 25 ºC, when exposed to a gas 

stream with a partial pressure of CO2 of 300 kPa.  

Solution. Henry's law data can be found in a bewildering variety of manners, and with different units, 

usually under the common name of 'Henry constant', KH. For solubility of CO2 in water at 25 

ºC, we may find, from the solubility data (Table 3) in Solutions, KH=ci,liq/ci,gas=0.80, meaning 

that, for CO2 to be at equilibrium between the aqueous phase and the gas phase, there must be 

0.80 mol/m3 of CO2 dissolved in water per each 1 mol/m3 of CO2 dissolved in the gas phase 

(or pure). We might find the same number but referring to mass concentrations, since they are 

just proportional with the factor MCO2=0.044 kg/mol, (3), KH=i,liq/i,gas=0.80, meaning that, 

for CO2 to be at equilibrium between the aqueous phase and the gas phase, there must be 0.80 

kg/m3 of CO2 dissolved in water per each 1 kg/m3 of CO2 dissolved in the gas phase (or pure). 

Those are the only non-dimensional 'constants' (constant in Henry's law, and other 

equilibrium laws in Chemistry, means that it only depends on temperature, not on pressure).  

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixtures.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/ePv.htm
http://imartinez.etsiae.upm.es/~isidoro/bk3/c06/Phase%20change.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c06/Phase%20change.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.pdf
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 We might find KH=ci,liq/pi,gas=32 (mol/m3)/bar, meaning that, for CO2 to be at equilibrium 

between the aqueous phase and the gas phase, there must be 32 mol/m3 of CO2 dissolved in 

water per each 1 bar (100 kPa) of partial pressure of CO2 dissolved in the gas phase (or pure); 

of course, we can check for consistency: ci,liq/ci,gas=RTci,liq/pi,gas, but it is prone to trivial errors 

on unit conversion (e.g. the 105 in ci,liq/ci,gas=RTci,liq/pi,gas=0.80=8.3·298·32/105.  

 We might find KH=xi,liq/pi,gas=580 ppm_mol/bar, meaning that, for CO2 to be at equilibrium 

between the aqueous phase and the gas phase, there must be 580 parts-per-million in molar 

base of CO2 dissolved in water per each 1 bar (100 kPa) of partial pressure of CO2 dissolved 

in the gas phase (or pure); we can check for consistency: ci,liq/ci,gas=(mRT/Mm)xi,liq/pi,gas, 

where subindex m referring to the solution, which can be approximated as pure water, and 

thence ci,liq/ci,gas=(mRT/Mm)xi,liq/pi,gas=0.80= (1000·8.3·298/0.018)·580·10-6/105. 

 We might find KH=ci,liq/ci,gas,STP=0.73 m3(STP)/bar, meaning that, for CO2 to be at equilibrium 

between the aqueous phase and the gas phase at 25 ºC, the amount of CO2 dissolved in 1 m3 

of solution, per each 1 bar (100 kPa) of partial pressure of CO2 dissolved in the gas phase (or 

pure), would occupy 0.73 m3 at STP-conditions of 0 ºC and 100 kPa; we can check for 

consistency: ci,liq/ci,gas,STP=(ci,liq/ci,gas)/(TSTP/T)=0.80·273/298=0.73, where subindex m 

referring to the solution, which can be approximated as pure water, and thence 

ci,liq/ci,gas=(mRT/Mm)xi,liq/pi,gas=0.80=(1000·8.3·298/0.018)·580·10-6/105. 

 In summary, if we assume that pure carbon dioxide at 300 kPa (or a gas mixture with that 

partial pressure of CO2) is at equilibrium with water at 25 ºC, the CO2 concentration in the gas 

phase is ci,gas=xip/(RT)=300·105/(8.3·298)=121 mol/m3, and the CO2 concentration in solution 

is ci,liq=KHci,gas=0.80·121=97 mol/m3, i.e. 0.17% of the molecules in the liquid phase are CO2, 

and 99.8% are H2O molecules (assuming no other solute is present); it can also be concluded 

that, if all the CO2 dissolved in 1 m3 of water at equilibrium at 25 ºC and 100 kPa, were 

extracted and put at STP-conditions (0 ºC and 100 kPa), it would occupy a volume of 2.2 m3. 

 

For a liquid mixture in contact with another condensed phase (a solid or an immiscible liquid), the 

boundary condition for a species concentration, i, called a solute, cannot be modelled in a simple form as 

Raoult's law; at most, in the ideal case, from the equality of the solute chemical potential in both phases 

one gets: 

 

 
,liq ,sol ,liq ,sol-liq ,sol-liq ,sol-liq

,sol

( ) ( ) ( ) ( ) ( )
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i i i i i i

i u u u u

x T T g T h T s T
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    
     (8) 

 

where the other phase has been labelled 'sol' both for the case of a solid or an immiscible liquid. In the 

case of a pure solid as a source of solute, the boundary condition (8) yields xi,liq=exp((i,soli,liq)/(RuT)), 

and it is known as the solubility of the solid solute in the liquid solvent specified (i.e. the maximum molar 

fraction of solute the liquid can hold). Solubility data for solid and liquid solutes in a liquid solvent can be 

found aside. 

 

http://imartinez.etsiae.upm.es/~isidoro/dat1/Solubility%20data.htm
http://imartinez.etsiae.upm.es/~isidoro/dat1/Solubility%20data.htm
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Diffusion of species within a solid is much more intricate, particularly when the solid is porous or is in a 

granular state, where hydrodynamic flow appears (seepage). Diffusion through one-piece solids is nearly 

negligible in most cases at room temperature, but can be studied with Henry's law (some values are given 

in Solutions). Gas solubility in solids increases with temperature, contrary to what happens in liquids, and 

subsequent degassing on cooling may be a nuisance (may even ruin a casting process by creating porosity 

and voids). Besides, chemical reactions may occur at room temperature (e.g. oxidation) but particularly 

when the temperature is increased to enhance mass transfer. 

SPECIES BALANCE EQUATION 

For a given species i in a mixture (solid, liquid or gaseous), its mass balance for a control volume is 

(accumulation = flux + production): 

 

 
,

surfaces
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where mi is the mass of species i in the volume V, 
ij  is the local mass-flux of species i at the surface area 

A, and wi a possible local species generation density due to chemical reactions. For a control-volume 

system of differential volume dxdydz, with the continuum model: 
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where i is its mass density and 
iv  the local velocity of the i-component fluid in a fix reference frame. For 

a one-component fluid, the mass balance (10) reduces to  / 0t v     , the well-known continuity 

equation of Fluid Mechanics, that can be recovered by summation in (10) for all the species i in the 

mixture; i.e.: 

 

      with /
0i iv vi

i i iv w v
t t

  
 

 
     

 
 (11) 

 

Notice that a similar argument might have been followed with molar densities instead of mass densities, 

and a molar-averaged velocity defined that would not coincide in general with the mass-averaged velocity 

v , that is traditionally used. 

 

Besides the species balance in a generic differential volume (10), the species balance in a generic 

interface must be established in many problems: 

 

 
, , ,0 i out i in i surface genm m m     (12) 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.pdf
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where the last term, species generation at the interface, only appears in the case of heterogeneous 

reactions at the interface. 

Diffusion rate: Fick's law 

Actual mixing of chemical species is governed by mass-transfer laws very similar to heat-transfer laws, 

establishing a linear proportion between forces and fluxes: in Heat Transfer, a linear proportion between 

the temperature-gradient, and the energy flow as heat; in Mass Transfer, a linear proportion between the 

species density-gradient, and the relative velocity of the species-fluid to the mean-fluid. The basic kinetic-

law for mass diffusion was proposed in 1855 by the German physiologist A. Fick for a homogeneous 

media without phase changes or chemical reactions, namely: 

 

   , withdi
i i i di di i i i i di

m
n v v v j D j y j j

A
                   (13) 

 

that reads: the mass-flow-rate of species i diffusing per unit area in the normal direction n  (mass-

diffusion flux of species i), 
dij , which is its density times the relative velocity of the species-fluid to the 

mean-fluid (the latter difference simply called diffusion speed 
di iv v v  ), is proportional and opposes to 

the species density-gradient, i, with the proportionality constant Di named mass-diffusivity for species 

i in the given mixture, and i=yi the mass-density for species i in the given mixture. Notice that Fick's 

law, 
di i ij D    , only accounts for mass-flow-rates and fluxes due to diffusion (by a gradient in 

concentration); if there is a convective flux j v  (not associated to gradients in concentration but to 

bulk transport at speed v ), then the net flux of species i is 
i i dij y j j  , or 

i i i i div v v    , which was 

used in (13). 

 

The original Fick's law (13), which he proposed just emulating Fourier's law (of 1822), perfectly matches 

experiments with dilute solutions, i.e. when the properties of the medium can be assumed independent of 

the species i concentration, and (13) can also be written as 
i i ij D y   , the most general Fick's law 

statement, extending (13) to cover diffusion at high concentrations. Even in the original case he tried, salt 

diffusion along a test tube from a saturated brine below to a fresh-water-swept zero-concentration at the 

mouth, with a density jump from 1200 kg/m3 at the salt-brine interface and 1000 kg/m3 at the top surface, 

deviations from the linear density profile corresponding to the one-dimensional steady-state problem with 

constant Di are less than a 1% at most; he found Dsalt,water=0.12·10-9 m2/s. 

 

Fick's law is similar to Fourier’s law for heat transfer q k T   (or  pq a c T    for a constant-

property medium), and applies to gases, liquids and solid mixtures, with Di depending on the diffusing 

species i, the medium and its thermodynamic state. Fick's law is also similar to Darcy's law of mean fluid 

velocity through porous-media  /( )v h p g     , and to Newton's law of momentum transport by 

viscosity  v      for a constant-density fluid of kinematic viscosity , where   is the stress tensor. 

In fact, for gases, a simplified analysis dictates that Di==. 

 

Notice that only the flux associated to the main driving force is considered in Eq. (13), i.e. mass-diffusion 

due to a species-concentration gradient (as for heat-diffusion due to a temperature gradient). There are 
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also secondary fluxes associated to other possible gradients (e.g. mass-diffusion due to a temperature 

gradient, known as Soret effect, and mass-diffusion due to a pressure gradient; alternatively, there may be 

heat-diffusion due to a species-concentration gradient, known as Dufour effect, and heat-diffusion due to 

a pressure gradient), but most of the times those cross-coupling fluxes are negligible. Besides, selective 

force fields may yield diffusion (e.g. ions in an electric field). Typical values for Di (and the thermal 

diffusivity a=k/(cp)) are given in Table 1, with Schmidt numbers, Sc=/Di, to evaluate non-ideality in 

gases (kinetic theory of ideal gases predicts Sc=1); for air solutions, the dynamic viscosity is practically 

that of air, =15.9·10-6 m2/s at 300 K. for aqueous solutions, the dynamic viscosity is practically that of 

water,=0.86·10-6 m2/s at 300 K. 

 

Table 1. Typical values for mass and thermal diffusivities, Di and a, and Schmith number, Sc, all at 300 

K (extracted from Mass diffusivity data). 

Substance Diffusivity Typical values Example Sc=/Di 

Gasesa) a 105 m2/s aair=22106 m2/s 

aCH4=24106 m2/s 

 

 Di 105 m2/s Dwaterapour,air=24106 m2/s  

DCO2,air=14106 m2/s (390106 m2/s at 2000 K) 

DCH4,air=16106 m2/s 

0.66 

1.14 

0.99 

Liquidsb) a 107 m2/s awater=0.16106 m2/s  

 Di 109 m2/s DN2,water=3.6109 m2/s 

DO2,water=2.5109 m2/s 

240 

340 

Solidsc) a 106 m2/s asteel=13106 m2/s 

aice=1.3106 m2/s 

afresh food=0.13106 m2/s 

 

 Di 1012 m2/s DN2,rubber=1501012 m2/s 

DH2,polyethylene=870001012 m2/s 

DH2,steel=0.31012 m2/s 

 

a) For gas diffusion, both for a and Di, a general dependence with temperature and pressure of the form 
Tn/p can be used, with 1.5<n<2 (according to simple kinetic gas theory, n=3/2. 

b) Mass diffusion in liquids grows with temperature, roughly inversely proportional viscosity-variation 
with temperature. 

c) Mass diffusion in solids is often not well represented by Fick's law, so that diffusion coefficients might 
not be well-defined, and other (empirical) correlations are applied instead of Fick's law. 

 

Notice that the definition of Fick`s law in (13) has been established in mass terms, but an analogous 

development could have been made in molar terms: 

 

   ,
di

i i i di di molar i i

n
n c v v c v j D c

A
        (14) 

 

Finally, notice that all the above expressions of Fick's law (13-14) assume a constant density medium, and 

will give good predictions for diffusion in dilute mixtures, e.g. when xi<0.1 all around (xi,max=0.104 in 

Fick's original experiment). But what happens in mixtures with large density gradients like the diffusion 

http://imartinez.etsiae.upm.es/~isidoro/dat1/Mass%20diffusivity%20data.htm
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through a tube connecting two large reservoirs of hydrogen and nitrogen (or air) where xi=0 at one end 

and xi=1 at the other? As said above, the real driving force for mass diffusion is not ci as in (14) neither 

i as in (13), but i. The only explicit relation between concentration variables and the chemical 

potential corresponds to ideal mixtures, where i=RuTlnxi. Even if we assume for simplicity that the 

flux is proportional to xi (and not to lnxi), i.e. 
d1 12 1j K x   with K12 independent of x1, the following 

identity applies for a non-diluted binary mixture: 

 

1

1
d1 12 1 12 12 1 12 1

2

( )
( )

1

( )

m
m

m

y

M zM
j K x K K y z D y

M

M z

             (15) 

 

showing that the assumption of K12 independent of z is still equivalent to the assumption of D12 

independent of z only for gaseous non-diluted mixtures, where the variation of mixture density along the 

length, m(z), compensates with the variation of mixture molar-mass, Mm(z). Thence, we may use 

d1 12 1( )mj z D y   for dilute mixtures in any physical state (solid, liquid or gas), and for non-dilute 

mixtures in the gaseous state. 

 

The binary diffusion model just described (one species diffusing in an independent medium) requires 

some averaging when several species diffuse in a medium, as for exhaust gases in ambient air; in some 

cases, considering an equivalent global diffusing species of molar fraction xi,global=xi and an equivalent 

average diffusivity Di,avrg given by xi,global/Di,avrg=xi/Di), has given good results. 

 

Exercise 3.  Find the species diffusion speed in the complete combustion of solid carbon in air at 300 K 

and 100 kPa, knowing that the reaction C+O2=CO2 takes place at the surface, which attains 

1500 K, consuming 2.2 grams of carbon per second, per square meter, and that mass fractions 

in the gas close to the surface are yN2=0.75, yO2=0.15, and yCO2=0.10. 

Solution. The aim of this exercise is to make clear some common misconceptions, as thinking that, 

because 1 mol of gas is released by each mol of oxidiser consumed, there would be no 

macroscopic velocities but just diffusion. 

 We only deal here with the mass transfer process, and only partially, since we do not compute 

the composition at the surface (we assume we know them), what really comes from a 

combined heat and mass transfer interaction, as well as the 1500 K at the surface. We only 

work here with fluxes, i.e. flow-rates per unit area, since we keep close to the surface, 

although the real problem may correspond to the burning of a carbon slab or of a small quasi-

spherical carbon particle. Of course, the data would be constant in the ideal planar case, but 

may change with time for other geometries. 

 The applicable equations are (9-15). Let us start with the fuel flow-rate. The supplied data is 

the carbon flux 2

C C 0.0022 (kg/s)/mj m A  , which can be interpreted as a consumption of 

carbon in the real unsteady process for a fixed control volume (fixed reference frame), or as a 

steady sink of carbon at the combustion front in the quasi-steady process for a thin control 

volume centred at the surface and moving with it at the receding speed (moving reference 
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frame); the latter can also be thought of as a source of carbon in an imaginary strictly-steady 

process in which the front does not move because new fuel is injected into the system (that 

can now be either of interfacial or volumetric size). In the fix-frame case, there is no 

velocities within the fuel (it is only de interface that is receding), whereas in the moving-

frame case the fuel has a positive speed vC=jC/C=0.0022/2200=1.0·10-6 m/s, having placed 

the combustion front at the origin, the fuel to the left-hand-side of the front, and taking the 

density of carbon 2200 kg/m3 from Solid data tables. 

 In moving axes, the stoichiometry C+O2=CO2 indicates that the required flux of oxygen is the 

same in molar basis, or, in mass terms jO2=jCMO2/MC=0.0022·0.032/0.012=0.0059 

kg/(s·m3), where the minus sign takes account of the direction of the oxygen flow (from the 

air at right to the front at the origin). Similarly, jCO2=jCMCO2/MC=0.0022·0.044/0.012=0.0081 

kg/(s·m3); of course, a global mass balance dictates that |jC|+|jO2|=|jCO2| (here 

0.0022+0.0059=0.0081; notice the extreme care needed to deal with the sign of fluxes, which 

are positive in the geometrical sense if they point to the right, but positive in the 

thermodynamic sense if they enter the system). Nitrogen has no net bulk motion and thus 

jN2=0. Notice that yN2+yCO2+yO2=1 at every stage in the gas phase, where yC=0. 

 But the original question was on diffusion speeds. First of all, we must realise that all the 

above fluxes are net fluxes in the moving frame, not diffusion or convection fluxes. The 

global convection flux is obtained by averaging net fluxes for all species at a point, j=ji. 

Thence, on the left of the front, where there is only pure fuel (solid carbon) the convective 

flux coincides with the net flux, and there is no diffusion, j=ji=jC=0.0022 kg/(s·m3). On the 

right side of the front, the sum of fluxes is (there is no fuel) 

j=ji=jO2+jCO2+jN2=0.0059+0.0081+0=0.0022 kg/(s·m3), as can be expected from the global 

mass balance in moving axes (0.0022 kg/(s·m3) enter the front and 0.0022 kg/(s·m3) exit it). 

We conclude then that the diffusion fluxes are jdi=jiyiji; 

jd,O2=jO2yO2ji=0.00590.15·0.0022=0.0062 kg/(s·m3), jd,CO2=jCO2yCO2ji= 

0.00810.10·0.0022=0.0079 kg/(s·m3), and jd,N2=jN2yN2ji=00.75·0.0022=0.0017 

kg/(s·m3). 

 We finally get from (13) the diffusion speeds sought, jdi=ivdi, with i=yi and 

=p/(RT)=105/(287·1500)=0.23 kg/m3 with the ideal gas model and the gas constant for 

standard air (we can compute the molar mass of the mixture, since we know the composition, 

but the effect is minimal since nitrogen is always dominant). Thence, the diffusion speeds are 

vd,O2=jd,O2/(yO2)= 0.0062/(0.15·0.23)= 0.18 m/s and vd,CO2=jd,CO2/(yCO2)= 

0.0079/(0.10·0.23)=0.34 m/s, and vd,N2=jd,N2/(yN2)= 0.0017/(0.75·0.23)=0.0096 m/s. The 

latter result is worth analysing: is then nitrogen diffusing, being an inert component in this 

combustion process? Yes, nitrogen diffuses towards the combustion front (were its 

concentration is smaller), to compensate the carry-over by the global convecting flow.  

 Notice that there is an overall convection speed v=ji/=0.0022/0.23=0.0096 m/s (i.e. to the 

right), so that the 'absolute' speeds (still in the moving frame) for each species are 

vO2=v+vd,O2=0.00960.18=0.17 m/s, vCO2=v+vd,CO2=0.00960.34=0.35 m/s, and 

vN2=v+vd,N2=0.00960.0096=0. Besides, in the fixed frame, the moving frame has a receding 

http://imartinez.etsiae.upm.es/~isidoro/dat1/eSol.htm
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speed opposite the fuel-feeding speed above computed, vC=jC/C=0.0022/2200=1.0·10-6 m/s, 

which is insignificant to the others. 

THE DIFFUSION EQUATION FOR MASS TRANSFER 

The substitution of Fick's law (13) in the species mass balance (10), and the assumption of constant 

diffusivity, gives the mass-diffusion equation: 

 

     2i i
i i di i i i i iv v w v D w

t t

 
   

 
       

 
 (16) 

 

entirely similar to the heat equation, that is here presented together to better grasp their similarity. For a 

unit-control-volume system, the species balance (in terms of mass fractions yi=i/) and the heat balance 

(in terms of temperature), adopt the following form: 

 

Balance of Accumulation  Production Diffusive flux Convective flux  

mass of species i 




y

t

i  = 
wi


 + D yi i2  ( )y vi


  (17) 

thermal energy 




T

t
 = 



cp

 + a T2  ( )Tv


  (18) 

 

where, again, wi is mass-production rate per unit volume by chemical reaction,  is heat-production rate 

per unit volume (e.g. by internal energy dissipation or external energy deposition), Di is species 

diffusivity, and a=k/(cp) thermal diffusivity. The constancy of overall density, =constant, has been 

introduced to pass from (16) to (17), a good approximation for dilute mixtures. Notice that with this 

approximation the continuity equation reduces to 0v  . Another useful form of the mass and energy 

balances is obtained using the convective derivative D() / D () / ()t t v     : 

 

       2 2 2 2D D D D

D D D D

i i i i i i i
i i i i i i i i i

i i

y w c w x Mw
D y D w D c D x

t t t M t M




 
                (19) 

 

similarly to the heat equation: 

 

       2D

D

T
a T

t c




    (20) 

 

The diffusion equation, (20) or (19), is a second order parabolic partial differential equation (PDE), to be 

solved with the particular boundary and initial conditions of the problem at hand. There are only a few 

cases where analytical solutions can be found, mostly for problems with very simple geometry (e.g. 

unbounded conditions) in steady state, or when the unsteady state has a self-similar solution reducing the 

diffusion equation to an ordinary differential equation (ODE), as presented in Heat conduction. 

Otherwise, i.e. in most practical problems, the diffusion equation has to be solved numerically (usually by 

finite-element or finite-difference methods), as presented in Heat conduction too. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20conduction.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20conduction.pdf
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Notice also that, for linear equations, the superposition principle applies and a series of solutions can be 

assembled to meet particular boundary conditions. 

SOME ANALYTICAL SOLUTIONS TO MASS DIFFUSION 

Although solutions to the mass diffusion equation are similar to those of the heat equation, we give here 

some particular applications of mass diffusion, as an example of how easy it is to convert from one 

formulation to the other.  

 

As any other time-dependant multi-dimensional phenomena, mass-diffusion models may be classified 

according to their dimensionality: steady, 1D problems (planar, cylindrical or spherical), 2D problems 

and 3D problems. We start by considering one of the simplest cases, the instantaneous point-source 

deposition, a key problem in mass transfer (as the instantaneous point-source release in heat conduction). 

Instantaneous point-source 

Consider the self-similar diffusion, in time and space, which can be planar, cylindrical or spherical, of a 

pulse deposition of a finite amount of mass, mi of species i, in an unbound non-moving medium of 

different composition; i.e. if at time t<0 there were no species i, and at time t=0 a finite amount mi is 

deposited at r=0; how will it diffuse for t>0? The solution is the principal solution (i.e. a point-source in 

an unbound medium) of the diffusion equation, which, in terms of the mass-density of species i, i≡mi/m, 

is: 

 

 

2
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2
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41
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ini i
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D t
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


 
 

        
   

 (21) 

 

with n=0 for the planar case (mi is then the mass released per unit interface area), n=1 for cylindrical case 

(mi is then mass released per unit axial length), and n=2 for the spherical case. This point-source solution 

is plotted in Fig. 1 for three time instants, and has the following properties: 

 

 

Fig. 1. Point-source diffusion. Species distribution at three time instants. 

 

 It is only valid for t>0, where it is a Gauss-bell shape (it is a Dirac delta function at t=0, and does 

not exists for t<0).  

 The mass of the species diffusing is conserved: 
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            for n=0 ( , )i ir t dr m



 ,   for n=1 

0
( , )2i ir t rdr m 



 ,   for n=2 2

0
( , )4i ir t r dr m 



  (22) 

 

 The maximum density occurs at the origin and decays with time as: 
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


  (23) 

 

i.e. as 1/t1/2 in the planar case, as 1/t in the cylindrical case, and as 1/t3/2 in the spherical case. 

Of course, the model cannot be valid for very short times; the density of species i cannot be 

larger than in its pure state (e.g. its liquid density for a drop diffusing in a liquid media, or its 

gas density for a puff diffusing in a gas media). 

Semi-infinite planar diffusion 

Another key problem is the inter-diffusion when two quiescent semi-infinite media (e.g. two different 

gases) are brought into contact, either by removal of a separating wall, or by parallel injection at the same 

speed at the end of a semi-infinite wall, what is the same if we change the reference frame, as sketched in 

Fig. 2.  

           
Fig. 2. One-dimensional, planar inter-diffusion: a) initial and generic mass fraction in two quiescent 

media, b) mass fraction in two media moving at the same speed, before mixing, and while being 

mixed.. 

 

As there is no characteristic length (the two media being semi-infinite), there is a self-similar solution in 

the combined variable x/(2(Dit)
1/2), which, in terms of the mass fraction of species i, yi, takes the form: 
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 (24) 

 

to be applied to each of the media by imposing the particular initial and boundary conditions. With 

subscript '-' for the left-hand-side medium and '+' for the right one, one gets: 
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 (25) 

 

what allows finding the six unknowns (A1, B1, A2, B2 yi,0, ji,0) from the six equations, in terms of the data 

(yi,1, yi,2). Of great importance is the value of mass-fraction at the contact, yi,0, which happens to be 

invariant with time, and results in: 
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Several other diffusion solutions are presented in Table 2, both in terms of species variables yi and Di, and 

in terms of thermal variables T and a, or just using the latter for ease of writing (to be applied to species-

diffusion problem by changing T to yi, a to Di, and Q/(c) to mi. 

 

Exercise 4. A mild steel with yC=0.2% (0.2% carbon percent in weight) is to be surface-hardened by 

exposure to a carbonaceous atmosphere at 1000 K. Assuming an equilibrium concentration of 

yC=1% at that temperature (from solubility data for that carbonaceous mixture conditions), 

find the required exposure time to achieve yC>0.8% at a depth of 1 mm from the surface. 

Solution. From Table 1 we get the diffusion coefficient for carbon in iron, DC,iron=301012 m2/s at 1000 

K. The diffusion equation (24), with the boundary conditions yC(0)=yC,0=1%, 

yC)=yC,=0.2%, becomes yC(x,t)=yC,0(yC,0yC,)exp(x/(4Dit)
1/2), which yields t=4300 s (1.2 

h) for yC=0.8%, yC,0=1%, yC,=0.2%, DC,iron=301012 m2/s, and x=10-3 m. Notice that the 

assumption of equilibrium at the surface is acceptable because diffusion in the gas phase is 

much more efficient than in the solid phase. 

Diffusion through a wall 

We present now a final example of mass diffusion, namely, the simple problem of steady leakage of a gas 

through a wall, mainly aiming at insisting on the fact that what drives mass diffusion is chemical potential 

and not concentration, as explained in Entropy. 

 

Exercise 5. Consider gas diffusion through the rubber wall of a nitrogen-filled balloon in air. Assume 

pure N2 inside, a 0.01 mm thick rubber wall of 0.5 m in diameter (i.e. a rubber mass of 0.0087 

kg), and 300 K and 100 kPa both outside and inside (negligible elastic force). Make a sketch 

of the nitrogen concentration everywhere, and estimate the relaxation time (e.g. the time for 

the gradients to dump half-way to equilibrium). 

Solution. First of all, notice that we focus just on nitrogen diffusion, but, contrary to heat diffusion 

where there is only one variable diffusing (thermal energy), here there is nitrogen diffusing 

outwards to the ambient but at the same time oxygen diffusing inwards. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Entropy.pdf
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 A second comparison with heat transfer is that mass diffusion through solids is much less 

efficient than heat diffusion: for a typical elastomer, with data from Solids data, thermal 

diffusivity is a≡k/(c)=0.1/(1100·2000)=45·10-9 m2/s, whereas diffusivity for nitrogen in 

rubber is 150·10-12 m2/s, and for oxygen in rubber 210·10-12 m2/s. This reason alone would 

explain why for most practical problems solids can be considered impermeable to fluids (i.e. 

"containers"), but there is more on that. 

 In fact, the most radical difference between heat diffusion and species diffusion is the abrupt 

jump on species concentration through an interface, contrary to the continuity of the 

temperature field. In effect, full thermodynamic equilibrium imposes uniform temperature, 

uniform velocity, and uniform chemical potential of each species across the interface, but this 

does not implies uniform species concentration except for uniform phases; at a phase-change 

interface, equality of chemical potential gives way to a jump in concentration that depends on 

the materials properties, with two important ideal cases deduced under Mixtures: Raoult's law 

for the equilibrium of an ideal mixture of gases with an ideal condensed phase, and Henry's 

law for the equilibrium of an ideal mixture of gases with an ideal dilute condensed phase. The 

latter is the case here, where a solute (N2 and O2) diffuses through a diluted condensed phase 

(basically rubber macromolecules with very little N2 and O2). From the solubility data (Table 

3) in Solutions, we can get the Henry constants: KH,N=ci,sol/ci,gas=0.04 for the solubility of 

nitrogen in rubber at 298 K, and KH,O=ci,sol/ci,gas=0.08 for the solubility of oxygen. You might 

have noticed that, unfortunately, there is a huge variety on Henry's law data presentation; the 

one used here was advocated by Ostwald, and means for instance that, for nitrogen to be at 

equilibrium between both phases, there must be 0.04 mol/m3 of nitrogen dissolved in rubber 

per each 1 mol/m3 of nitrogen dissolved in the gas phase. Notice, by the way, that all 

interfaces are selective to some extent (e.g. rubber lets oxygen to flow more readily than 

oxygen, what can be advantageously used for separation of species from a mixture. 

 In our case, inside the balloon, nitrogen is pure, with a concentration of 

c=p/(RT)=105/(8.3·300)=40 mol/m3 of nitrogen, whereas in the air outside there is a 

concentration of cN=xNp/(RT)=0.79·105/(8.3·300)=32 mol/m3 of nitrogen. We can assume that 

these equilibrium concentrations apply also close to the rubber even during non-equilibrium 

(i.e. while diffusion is taking place), due to the small fluxes implied. 

 Within the balloon matter itself, the equilibrium concentrations at each end are the following. 

At the internal interface, cN,sol=KH,Nci,gas=0.04·40=1.6 mol/m3 of nitrogen, whereas at the 

external interface, cN,sol=KH,Nci,gas=0.04·32=1.3 mol/m3 of nitrogen. What results in the 

concentration profile shown in Fig. 3a. 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixtures.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.pdf
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   Fig. 3. Gas diffusion through a rubber wall: a) Initial concentration profile for nitrogen diffusion 

from a nitrogen-filled balloon (left) to ambient air (right); notice that nitrogen diffuses against 

the concentration jump in the outer interface. b) Time evolution of the amounts of nitrogen, 

oxygen, and the sum, inside the balloon. 

 

 Finally, for the estimation of the relaxation time, we must compute the mass-diffusion flux 

jN=Di,NN, (13), or in molar terms, (14), jN,molar=Di,NcN=Di,N(cN,extcN,int)/Lth= 150·10-

12(1.31.6)/10-5=5·10-6 (mol/s)/m2 of nitrogen. With a balloon area of A=D2=0.79 m2 

(V=D3/6=0.065 m3), and an initial content of nN=pV/(RT)=105·0.065/(8.3·300)=2.6 mol, we 

have a rough estimate thalf=nN/(jN,molar·A)=2.6/(5·10-6·0.79)=0.7·106 s, i.e. of the order of 8 

days (no wonder why one always starts neglecting diffusion through solids). But this analysis 

is too crude: what happens to internal pressure, or balloon volume, when nitrogen disappears? 

What about the oxygen flux? The latter is jO,molar=Di,OcO=Di,O(cO,extcO,int)/Lth=210·10-

12(00.67)/10-5=14·10-6 (mol/s)/m2 of oxygen. You can observe that oxygen flux is three 

times that of nitrogen, what might have been expected from the higher solubility of oxygen in 

rubber, and the higher diffusivity, the jump in concentration being equal (from 40 mol/m3 to 

32 mol/m3 for nitrogen, and from 0 to 8 mol/m3 for oxygen; the sum being 40 mol/m3 in each 

side as expected for ideal gases at the same temperature and pressure). So, what happens to 

internal pressure and volume? It depends on the elastic law for the rubber. 

 In any case, the equation pV=nRT shows that, at T=constant (very slow process) and with n 

initially increasing because the inflow of O2 is larger than the outflow of N2, the product pV 

should increase initially but decrease afterwards because final equilibrium must be with the 

same composition everywhere, and thus recovering the same initial pV-values. The maximum 

can be found to be 8% larger than initial conditions (pVmax=1.08pVini), and to take place about 

one day from the beginning, as shown in Fig. 3b. 

Summary table of analytical solutions to diffusion problems 

Table 2. Analytical solutions to some diffusion problems. 

Problem Sketch Solution Notes 

Instantaneous point-

source deposition, 

one-, two-, tri- 

dimensional 
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T relative to T(t<0). 

Planar case: n=0 and 

Q [J/m2].  

Cylindr. case: n=1 
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Spherical case: n=2 

and Q [J]..  
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Singular at r=0. 

For 4r at ,  

Ei(-x)  ln(x), 

with =0.577. 
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Continuos spherical-
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Only valid for r>R.  
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Moving planar-source 

one-dimensional 

deposition  
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t<0: 

T(x)=T∞, yi(x)=yi∞. 

t>0: 

T(0)=T0, yi(0)=yi0. 

 

Moving point-source 

tri-dimensional 

deposition  
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state (t→ ). 
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U is the constant 

relative speed. 
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surface 
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t<0: 

T(x)=T∞, yi(x)=yi∞. 

t>0: 

T(0)=T0, yi(0)=yi0. 

 

Planar contact  
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Contact value is T0 

for heat transfer, or 

yi0 for mass transfer. 

t=0, Heaviside(x). 

If equal properties: 

T0=(T1+T2)/2 and 

yi0=(yi1+yi2)/2. 

Continuos one-

dimensional planar 

plate immersion 
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t<0: 

T(x)=T∞, yi(x)=yi∞. 

t>0: 

T(0)=T0, yi(0)=yi0, 

T(L)=T0, yi(L)=yi0. 

 

 

One-dimensional 

planar contact, steady 

in a moving frame 

(e.g. mixing layer of 

two equal-speed 

streams) 
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latter changing 

t=z/v, where v is the 

common speed 
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One-dimensional 

planar steady 

diffusion through a 

wall or gap 

(e.g. evaporation 

from a test tube) 
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Example: for 1 cm 

of air with given end 

values of T or yi, 

there is 2,5 Wm-2K-

1 of heat flux, or 1 

mm of liquid water 

evaporating per day 

One-dimensional 

spherical steady 

diffusion  

(e.g. evaporation 

from a drop) 

 
 

 T T

T T

r

r
q k

T T

r

y

y

y

y

y y

y y

r

r

j D
y y

r
V r

q k
T T

r
r h

i

i

i

i

r

r
V D L

i i

i i

i
i i

r r liq

liq lv

i




  












F
HG

I
KJ  






 


 

 










 













0

0 0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

 ,    

 

 





 

/

  



 

Example: a water 

droplet 1 mm in 

diameter with air at 

50%RH lasts some  

5000 s in 

evaporating, but a 

0.1 mm droplet only 

50 s, in both cases 

with some T=10 K 

drop. 

EVAPORATION RATE 

An analysis of gas diffusion combined with evaporation from a condensate (valid for solids or liquids) 

can be found in Combustion kinetics. We bring here just the result for a droplet evaporation lifetime: 
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 (27) 

 

with the equilibrium mass fraction of the vapours close to the liquid surface being:  
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xi0 being the vapour molar fraction, which for ideal mixtures is given by Raoult's law in terms of the pure-

component vapour pressure (Mi and Mm are the molar mass of the diffusing species and of the mixture, 

respectively). Far in the atmosphere, the concentration of the diffusing species is usually zero, or some 

environmental data, like relative humidity for water vapour: 
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Equation (27) can be explained (and memorised) with the help of an order-of-magnitude analysis, in the 

following way. The time for diffusion of a gas puff of characteristic size r0,ini with a high concentration of 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c15/Combustion%20kinetics.pdf
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species i, yiw, within a gas mixture with lower concentration of i, yi, would arrange to yield a mass-

Fourier number of order unity, i.e. tdif=r2
0,ini/(Diyi), and taking into account the fact that the puff is 

condensed, the lifetime (for evaporation, now) will be proportional to the density ratio, thus 

tevap=r2
0,ini/((/liq)Diyi), a rather accurate approximation to the exact result (27); just a numeric factor, 

since for yi<<1, ln((1yi)/(1yi0))  yiyi0. 

 

Another way to produce (27) is by heat-transfer analogy. In effect, for heat diffusion from a hot sphere we 

know that the Nusselt number is Nu=2 (what can also be checked from any heat convection correlation 

around a sphere at very low Reynolds numbers). Thence, the Sherwood number (see Non-dimensional 

parameters in Heat and Mass Convection) is Sh≡hmL/(Di)=2, with the characteristic length being 

L=D=2r0 in this case; i.e.: 
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 (30) 

 

For instance, for the lifetime for a 0.1 mm in diameter water droplet in ambient air at 25 ºC and 50%HR, 

we get tevap=4.3 s, with r0=50·10-6 m, =air=1.2 kg/m3,liq=1000 kg/m3, Di=24·10-6 m2/s (Table 2 

above), yi=0.01 and yi0=(p*/p)(Mi/Mm)=(3.17/100)(0.018/0.029)=0.02 
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