
INSULATED BOX WITH INTERNAL HEATING page 1

INSULATED BOX WITH INTERNAL HEATING

(SÓLIDO AISLADO CON DISIPACIÓN INTERNA)

Statement

Find the steady temperature field in a solid box of side L=0.1 m and thermal conductivity k=10 W/(m·K), with

uniform internal heat dissipation of
disW =10 W, thermally insulated all around except at one face, and with

Tm=100 ºC at the opposite face.

Calcular el campo de temperaturas en un sólido cúbico de 0,1 m de lado y conductividad térmica

k=10 W/(m·K), con una disipación de energía interna uniforme de
disW =10 W, estando aislado térmicamente

por todas sus caras menos una, y con Tm=100 ºC en la cara opuesta.

Solution

This is a one-dimensional (1D) configuration of heat transfer at steady state, with a simple solution. The

generic heat equation (a parabolic PDE) becomes a simple second-order ODE, easily integrated to yield the

explicit analytical solution:

  
2 2 2 2

steady-1D 2

02 2 2 2

d
0

d 2

T T T T T
c k k T x T x

t x y z x k


  

    
          

    

Fig. 1. Temperature profile

i.e. a parabolic T-profile along the heat-transfer direction, 0≤x≤ (we chose x for the basic coordinate, as nothing

changes along the y-axis and z-axis), with a volumetric heat source, =
disW /L3 (in our case =

disW

/L3=10/0.13=10 kW/m3), a maximum temperature at x=0 (in our case T0=Tm=100 ºC), and the two boundary

conditions applied: at x=0, both T=T0, and dT/dx=0. The two concrete results that can be extracted are:

1. The temperature at the face where heat flows out of the box is:

2 dis
0 0

10
100 95 ºC

2 2 2·10·0.1
L

W
T T L T

k kL


      

INSULATED BOX WITH INTERNAL HEATING page 2

2. The temperature slope at x=L confirms that the whole
disW =10 W flows out:

dis dis
dis3 2 2

d 10 K d
100

d 10·0.1 m d

x L

L

x L

W WT T
x x W Q kA

x k kL kL x

 



             

This simple problem poses, however, some difficulties to be solved by standard numerical methods.

One may be tempted to go directly to a versatile numerical heat-transfer simulation based on the finite element

method (FEM); we shall use a generic FEM provided in Matlab’s pde-toolbox. Of course, our 1D problem is

too simple for such a tool (to begin with, this FEM implementation requires at least 2D geometry, but this is

not a difficulty but a waste of computation time). The real problem arises when we try to impose the boundary

conditions: we know that the edge at x=0 is adiabatic (edge E4 in Fig. 2a), but we know nothing at x=L (edge

E2; edges E1 and E3 are adiabatic). As we know that at the steady state T0=100 ºC, we might be tempted to

fix that instead of dT/dx|x=0=0, but this yields an absurd result, because the programme assumes that all faces

of the box are adiabatic, and the heating is unbounded (yet, one has to think about, because the program gives

no clue for the absurd result). Fortunately, a global thermal analysis teaches that, at the steady state, the heat

flux (or the temperature gradient) at x=L can be obtained from  dis d dL x L
W Q kA T x


   and now the

program yields the right solution. We can see that dT/dx|x=0=0 in the result. The Matlab code and its output

are:

% Statement:

L=0.1; A=L*L; Tm=100; Q=10; phi=Q/L^3; k=10; Tp=-Q/(k*A); Nx=10; X=linspace(0,L,Nx);

md=createpde;Box=[3,4,0,L,L,0,0,0,L,L]';gm=[Box];ns=char('Box');ns=ns';sf='Box';

dg=decsg(gm,sf,ns);geometryFromEdges(md,dg);

subplot(2,2,1);pdegplot(md,'EdgeLabels','on','FaceLabels','on');grid;xlabel('X [m]');ylabel('Y [m]');

generateMesh(md);subplot(2,2,3);pdemesh(md);xlabel('X [m]');ylabel('Y [m]');

%State pde-equation and boundary conditions

specifyCoefficients(md,'m',0,'d',0,'c',k*L,'a',0,'f',phi*L);

applyBoundaryCondition(md,'Edge',4,'u',Tm);

applyBoundaryCondition(md,'Edge',2,'g',k*L*Tp);

%Solve and plot result

Sol=solvepde(md);u=Sol.NodalSolution;

subplot(2,2,2);pdeplot(md,'XYData',u,'Contour','on','ColorMap','autumn');grid;xlabel('X [m]');ylabel('Y [m]');

Y=X; T_=interpolateSolution(Sol,X,Y); subplot(2,2,4);plot(X,T_);xlabel('X [m]');ylabel('T [ºC]');

Fig. 2. Temperature profile obtained by FEM, for T=100 ºC at x=0 and dT/dx|x=L=  disW kA .

INSULATED BOX WITH INTERNAL HEATING page 3

However, what if we wanted to simulate the transient from say an initial T(x)=0 ºC to that final state? Of

course, some thermal capacity is needed; let us assume typical values of =1000 kg/m3 and c=1000 J/(kg·K).

During that transient we know that dT/dx|x=0=0; but the solver requires one boundary condition at each edge.

If we insist on applying the same boundary conditions as for the steady case, we get the same final result,

independently of the initial condition and the thermal capacity assumed, but the intermediate T-profiles are all

wrong because T(0)=100 ºC and dT/dx|x=L=  disW kA =100 K/m are only valid as t→∞ but not during the

transients. Incidentally, we need to provide a total simulation time. Although we may set a value, and see from

the results if we were too short or too long, it is better to have an idea of the proper order of magnitude, which

for conduction-limited problems is tc=cL2/k=103·103·0.12/10=103 s. The coding in Matlab language, and its

results are:

% Statement:

L=0.1; A=L*L; Tm=100; Q=10; phi=Q/L^3; k=10; rho=1000; c=1000; Tp=-Q/(k*A);

Nx=20; Nt=50; Tini=0; X=linspace(0,L,Nx); T=Tini*ones(Nt,Nx); tsim=2e3; tlist=logspace(0,log10(tsim),Nt)';

md=createpde;Box=[3,4,0,L,L,0,0,0,L,L]';gm=[Box];ns=char('Box');ns=ns';sf='Box';

dg = decsg(gm,sf,ns);geometryFromEdges(md,dg);

subplot(2,3,1);pdegplot(md,'EdgeLabels','on','FaceLabels','on');grid;xlabel('X');ylabel('Y');

generateMesh(md);subplot(2,3,4);pdemesh(md);xlabel('X');ylabel('Y');

%Set equation, boundary conditions and initial conditions

specifyCoefficients(md,'m',0,'d',rho*c*L,'c',k*L,'a',0,'f',phi*L);

applyBoundaryCondition(md,'Edge',4,'u',Tm);

applyBoundaryCondition(md,'Edge',2,'g',k*L*Tp);

ic=@(~)Tini;setInitialConditions(md,ic);

%Solve and plot result

Sol=solvepde(md,tlist);u=Sol.NodalSolution;

subplot(2,3,2);pdeplot(md,'XYData',u(:,end),'Contour','on','ColorMap','autumn');grid;xlabel('X');ylabel('Y');

subplot(2,3,5);pdeplot(md,'XYData',u(:,end),'ZData',u(:,end),'ColorMap','autumn');grid;xlabel('X');ylabel('Y');

Y=X; T_=interpolateSolution(Sol,X,Y,[1:Nt]); %Interpolation from T(tri-nodes) to T(sqr-mesh)

subplot(2,3,3);plot(X,T_);xlabel('X [m]');ylabel('T [ºC]');

subplot(2,3,6);plot(tlist,T_);xlabel('time [s]');ylabel('T [ºC]');

Fig. 3. Temperature evolution by FEM, from Tini=0 ºC, for fix boundary conditions: T|x=0=100 ºC and

dT/dx|x=L=hA(TLTini).

INSULATED BOX WITH INTERNAL HEATING page 4

The final T(x)-profile in Fig. 3 is correct (a parabolic drop from T(0)=100 ºC to T(1)=95 ºC, coincident with

Fig. 2), but the transients are all wrong; we expect an almost flat T(x)-profile growing with time. The heat-

transfer problem is ill posed (but it may take time to realise why).

Consider now the finite difference method (FDM) in the explicit form, which is simpler and easily followed

step by step, contrary to the FEM. We starts from an initial profile, e.g. T(x,t)|t=0=0 ºC as with the FEM, and

build new T(x)-profiles as time advances, using the nodal points shown in Fig. 4 and the only known boundary

condition during the transient, namely the adiabatic condition at x=0. The discretization to be used (Fig. 4) is:

Fig. 4. Nodal scheme used in our FDM.

 At intermediate nodes (2≤i≤N in Fig. 4), the energy balance is:

 
 

12

1 1

2

1

1 12
2

j j j j j j

i i i i i i

j j j j j

i i i i i

T T
c k A xc kA A x

t x t x x

k t t

cc x

     
   


    





 



 

   
         

     

 
     



 At boundary nodes (note that their mass is half of the generic ones), on the left (i=1):

 
0

1
0 11 1 2 1 2 1

0 1 1 2
2

2 2

j j j j j j
Q j jx x t

A c kA A Q k
t x c x

     
    




 

     
       

    

 and on the right (i=N+1):

1

1 1 1

2 2

j j j j

N N N N
L

x x
A c k A Q

t x

   
 



    
   

 

 where now the heat going outside at the right-hand side during the transients,   LQ t , is unknown;

hence, we cannot solve for updating
1

j

N 
 as done for

1

j above.

We now realise that we must impose an additional boundary condition at x=L; thinking on the real physics

(often forgotten when immersed in the interpretation of massive results from numerical schemes and the effect

of discretization parameters), we realise that we are free to fix
LQ , or to fix

1

j

N 
, or a convective coefficient,

h, to an ambient fluid at T∞, such that  1

j

L NQ hA T    , with a presumable T∞=Tini=0 ºC in our case, or

thermal radiation cooling in vacuum within a large enclosure,  4 4,

1

j

L NQ A T     , where  is the emissivity

of the right face. For instance, if we choose the convective boundary condition with in calm air with a typical

value of h=10 W/(m2·K), the Biot number Bi=hL/k=10·0.1/10=0.1 being Bi<<1 indicates that now the heat

INSULATED BOX WITH INTERNAL HEATING page 5

transfer is limited by convection, and the characteristic relaxation times is tc=cL/h=103·103·0.1/10=104 s,

an order of magnitude larger than in the conduction-limited case above. The Matlab code and its results are:

%Statement:

L=0.1; A=L*L; Q=10; phi=Q/L^3; k=10; rho=1000; c=1000; tsim=1e5; Tini=0; Tinf=Tini; h=10;

N=20; M=10e4; a=k/(rho*c); Dx=L/N; Dt=tsim/M; Fo=a*Dt/(Dx*Dx)

X=linspace(0,L,N+1); t=linspace(0,tsim,M+1)'; T=Tini*ones(M+1,N+1);

%Iteration:

for j=2:M+1

 T(j,1)=T(j-1,1)+(2*Dt/(rho*c))*(k*(T(j-1,2)-T(j-1,1))/Dx^2+phi/2);

 for i=2:N

 T(j,i)=T(j-1,i)+(Dt/(rho*c*A))*((k*A*(T(j-1,i+1)-T(j-1,i))-k*A*(T(j-1,i)-T(j-1,i-1)))/Dx^2+phi*A);

 end

 T(j,N+1)=T(j-1,N+1)+(2*Dt/(rho*c))*(k*(T(j-1,N)-T(j-1,N+1))/Dx^2+phi/2-h*(T(j-1,N+1)-Tinf)/Dx);

end

%Results

subplot(2,2,1);plot(X,T(1:M/25:M+1,:));xlabel('X [m]'),ylabel('T [K]');title('T(t,x) vs. X at several times');

subplot(2,2,3);plot(t,T(:,1:N/10:N+1));xlabel('t [s]'),ylabel('T [K]');title('T(t,x) vs. t at several locations');

subplot(2,2,2);plot(X,T(1:M/25:M+1,:));xlabel('X [m]'),ylabel('T [K]');title('T(t,x) vs. X at several times');axis([0 L 95 105]);

Fig. 5. Temperature evolution by FDM, from Tini=0 ºC at t=0, with dT/dx|x=0=0, and dT/dx|x=L=hA(TLTini).

The details near the steady state are shown at the right.

The results in Fig. 5a show an almost uniform warming of the material, as expected, but with the final state

(better seen in Fig. 5b) in disagreement with what we expected, the parabolic T(x) starting with T0=100 ºC and

ending with TL=95 ºC seen in Fig. 2; in fact, we got the same profile but shifted upwards 5 ºC. We can also

see that, doubling the convective coefficient, yields a similar end result but shifted downwards to T0=55 ºC

and TL=50 ºC. In each case, we may check that at the steady state all the power dissipated inside goes out.

In conclusion: the steady-state solution required in the statement cannot be directly solved as the limit of a

transient problem if we ignore the boundary conditions during the transient, and fixing them (e.g.

T(t,x)/x|x=0=0 and kT(t,x)/x|x=L=hA(T(t,x)T∞) with given h and T∞) usually do not produce the desired

end result (here T0=100 ºC). Fortunately, in many cases there is no need to iterate on the parameter (e.g. h) to

match the end result: at the steady state, the internal solution yielded  0 2L disT T W kL  =10/(2·10·0.1)=5 K,

i.e. TL=95 ºC, while the heat balance at the external surface,  dis LW hA T T  , yields the appropriate value

INSULATED BOX WITH INTERNAL HEATING page 6

of   dis Lh W A T T  =10/(0.12·(95-0))=10.5 W/(m2·K). In the case of pure radiative cooling the heat

balance at the external surface,  4 4

dis LW A T T    , would yield the maximum value of T∞ to cope with this

heat,  
1 4

4

L disT T W A
    =[(95+273)410/(0.12·5.67·10-8)]=162 K (smaller for emissivity <1). Finally,

the general heat transfer formulation Q KA T  , teaches that, to evacuate the stated power Q , instead of

increasing the heat transmittance K (in this case increasing the convection coefficient, e.g. by blowing air with

a fan), or increasing T (in this case decresing the environmental temperature), the simplest solution may be

to increase the cooling area A (e.g. by attaching a larger conductive plate).

Comments

This exercise teachs how embarrassing numerical simulation may become if we dive into discretization details

without paying proper attention to the physical problem.

Back to Heat and mass transfer

Back to Thermodynamics

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/index.htm
http://imartinez.etsiae.upm.es/~isidoro/bk3/index.html

