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HEAT CONDUCTION IN AN ELECTRONICS PLATE 

 

Statement 

Consider an instrument plate in a satellite, consisting of two layers of CFRP of 2 mm thick, and a layer of 

solid foam (F) of 12 mm inside which elements of the electric battery are housed in a modular way. Each 

plate module measures 300×80×16 mm3, and holds one Li-ion battery module (B) embedded on a centred 

slit of 140×70×6 mm3 on one side of the foam (F); the effect of connections and auxiliary circuits are 

neglected. The following simplified thermal model is to be considered (the properties of the materials are 

given in Table 1). The battery element, in the most critical case, dissipates 1 W during a 30 minutes period, 

being idle for the other 60 minutes of the cycle. We only consider heat transfer by conduction to one of the 

short ends of the module, which is assumed to remain at 300 K (the other three sides of symmetry can be 

assumed). In particular: 

a) Solve the steady heat-conduction problem (1 W) from the battery element (B, to be considered in 

this point as isothermal) to the plate edge (Tb=300 K), through the two parallel paths: 1) direct path 

along the contact face; and 2) indirectly through the 6 mm foam and then along the other sheet of 

CFRP. 

b) Calculate the admissible thermal load of equipment to be mounted on the plate so that the plate 

temperature does not exceed 75 °C. 

c) Solve analytically the one-dimensional steady heat-conduction problem along the layer of CFRP 

alone (excluding battery) with 1 W uniformly distributed over the entire CFRP layer. 

d) Solve analytically the one-dimensional steady heat-conduction problem along the layer of CFRP 

alone (excluding battery), but now with energy dissipation evenly distributed only in the transverse 

direction of the module (80 mm). 

e) Solve analytically the one-dimensional steady heat-conduction problem along the combined layer 

of CFRP and battery (but not through the foam). 

f) Solve numerically the one-dimensional unsteady heat-conduction problem with the temporal 

variation of the energy dissipation given. 

g) Solve numerically the problem of two-dimensional transient conduction from the isothermal state 

to the steady state of 1 W dissipation at the battery element. 

 

Table 1. Materials properties. 

  [kg/m3] c [J/(kg·K)] k [W/(m·K)] 

CFRP 1500 840 30 (parallel) 

1,25 (perpend.) 

F 75 1200 0.03 

B 2400 900 35 (parallel) 

1,5 (perpend.) 
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 En un satélite se piensa usar una bandeja porta-instrumentos construida en panel compuesto, formado 

por dos capas de CFRP de 2 mm de espesor, y una capa de espuma sólida (F) de 12 mm de espesor en cuyo 

interior van alojados los elementos de la batería eléctrica. Se va a estudiar el comportamiento térmico de 

uno de los módulos laterales de la bandeja, de dimensiones 300×80×16 mm3. En una de las caras de F hay 

una hendidura centrada que aloja un elemento de batería (B) de Li-ion, de 140×70×6 mm3; el efecto de las 

conexiones y circuitos auxiliares de la batería no se tienen en cuenta. Se va a estudiar el siguiente modelo 

térmico simplificado (las propiedades de los materiales se dan en la Tabla 1): el elemento de batería, en el 

caso más crítico, disipa 1 W durante 30 minutos y está inactivo los siguientes 60 minutos del ciclo. Solo se 

va a considerar la transmisión de calor por conducción a uno de los extremos cortos del módulo, que se 

supondrá que permanece a 300 K (los otros tres lados se pueden suponer de simetría). En particular, se 

pide: 

a) Resolver el problema de conducción estacionaria (1 W) desde el elemento de batería (B, que se 

considerará isotermo en este apartado), hasta el borde de la placa (a Tb=300 K), a través de los dos 

caminos paralelos: 1) el directo, a lo largo de la cara en contacto; y 2) el indirecto, a través de los 6 

mm de espuma y luego a lo largo de la otra lámina de CFRP.  

b) Calcular la carga térmica admisible de los equipos que fueran montados sobre la bandeja, para que 

la temperatura de esta no supere los 75 ºC. 

c) Resolver analíticamente el problema de conducción unidimensional estacionaria a lo largo de la 

capa de CFRP (sin contar la batería), con los 1 W distribuidos uniformemente sobre toda la cara del 

módulo.  

d) Resolver analíticamente el problema de conducción unidimensional estacionaria a lo largo de la 

capa de CFRP (sin contar la batería), pero ahora con la disipación de energía distribuida 

uniformemente sólo en la dirección transversal del módulo (los 80 mm). 

e) Resolver analíticamente el problema de conducción unidimensional estacionaria a lo largo de la 

capa de CFRP contabilizando también la conducción en la batería (pero no a través de la espuma). 

f) Resolver numéricamente el problema de conducción unidimensional no estacionaria con la 

variación temporal de la disipación de energía dada. 

g) Resolver numéricamente el problema de conducción bidimensional transitorio desde el estado 

isotermo hasta el estacionario con 1 W disipándose en la batería. 

 

Solution 

a) Solve the steady heat-conduction problem (1 W) from the battery element (B, to be considered in 

this point as isothermal) to the plate edge (Tb=300 K), through the two parallel paths: 1) direct path 

along the contact face; and 2) indirectly through the 6 mm foam and then along the other sheet of 

CFRP. 



Heat conduction in an electronics plate  page 3 

a) b)     

Fig. 1. a) Top view and profile of the plate element with the embedded battery element, with 

dimensions (in mm). b) Heat paths from battery (B) to base (b). 

There are two heat paths in parallel: 

1. Direct path, along the upper layer of CFRP, with a thermal resistance R1T/Q1=L80/(kCAC) 

=L80/(kCLyLzC)=0.08/(30·0.08·0.002)=16.7 K/W; i.e. through the CFRP layer (2 mm thick by 80 

mm wide) a fraction of the total heat, Q1<Q=1 W, flows from the battery at TB (which can be 

considered to be at x=0.080 m because of its large thermal conductance) to the base temperature 

Tb=300 K at x=0. Notice that we take the 80 mm width for the heat path, in spite of the 70 mm 

width of the battery module (the CFRP temperature in the 5 mm edges are not expected to have 

significant transversal gradients). 

2. Indirect path, with two stages in series: one transversal across the remaining 6 mm foam thickness, 

followed by the heat flow along the opposite CFRP layer. The thermal resistance of this combined 

indirect path is R2=R2F+R2C=LzF2/(kFAFp)+L80/(kCAC)= 0.006/(0.03·0.08·0.14)+16.7= 

17.9+16.7=34.5 K/W. Notice that we take the 80 mm width for the heat path, for consistency. 

 

The global thermal resistance, R, of the two paths (direct and indirect), being in parallel, is obtained from 

1/R=1/R1+1/R2, what yields R=11.2 K/W, from which we obtained the battery temperature, 

TB=Tb+QR=300+1·11.2=311.2 ºC, and the share of heat flows: Q1=0.67 W and Q2=0.33 W. The 

temperature jump across the 6 mm foam under the battery is T2F=Q2R2F=0.33·17.9=5.9 ºC, is 

representative of the mid-point jump (i.e. at x=Lx/2). 

 

b) Calculate the admissible thermal load of equipment to be mounted on the plate so that the plate 

temperature does not exceed 75 °C. 

 

It will depend on which side, and at what distance from the edge, the equipment is installed. If installed 

centred on the face in contact with the battery, the problem is solved by setting TB=75 ºC above, and 

calculating the total heat flow as before, resulting in Q=T/R=(75+273300)/11.2=4.3 W in total (i.e. 3,3 

W plus the 1 W battery). If installed centred but on the opposite side, a lower heat load would be admissible, 

as it can be easily seen by considering only the direct path heat resistance, which now it would be 

R1
’T/Q=L150/(kCAC)=0.150/(30·0.08·0.002)=31.3 K/W and would yield Q=T/R=(75+273-

300)/31.3=1.5 W instead of the previous 3.3 W. The explanation is that the battery material helps to carry 

away the heat load best if there is no insulation between. 
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b) Solve analytically the one-dimensional steady heat-conduction problem along the layer of CFRP 

alone (excluding battery) with 1 W uniformly distributed over the entire CFRP layer.  

 

The 1D-heat-conduction equation with a volumetric heat source , cT/t=k2T/t2+, can be integrated 

at the steady state to yield T(x)=a+xbx2/(2k), which, with =W/(LxLyLzC)=109/(300·80·2)=21 kW/m3, and 

the boundary conditions, T(0)=a=T0 and dT/dx|x=0=b=L/k, yield T(x)=T0+(/k)(xLx2/2), with a maximum 

value of Tmax=T0+L2/(2k)= 300+21·103·0.32/(2·30)=331 K (58 ºC).  

 

A crude estimation of the time to reach the steady state from initial conditions can be obtained by solving 

an energy balance with the Q=1 W employed just on heating the CFRP layer from 300 K to 331 K, i.e 

tc=mcT/Q=LxLyLzcT/Q=1500·0.3·0.08·0.002·840·(331300)/1=1900 s, although this is a lower bound 

because it does not takes into account the heat being lost and the thermal capacity of battery and the rest. 

 

d) Solve analytically the one-dimensional steady heat-conduction problem along the layer of CFRP 

alone (excluding battery), but now with energy dissipation evenly distributed only in the transverse 

direction of the module (80 mm). 

 

Now, the parabolic temperature profile obtained above, is only valid for the central segment (from x1=80 

mm to x2=220 mm), and it must be matched to two linear T-profiles at the extremes (where =0), i.e. 

T01(x)=a1+xb1, T12(x)=a2+xb2x2/(2k), T23(x)=T2 (constant because no heat flow to the right). Imposing the 

continuity of the T-profile, T(x), at the two intermediate discontinuities, T1 y T2, and the continuity of the 

heat flow, Q (x)=kAdT/dx, i.e.: 

 At x=L80=80 mm, a1+L80b1=a2+L80b2L80
2/(2kC) and kCAb1=kCAb2+AL80. 

 At x=L220=220 mm, a2+L220b2L220
2/(2kC) and kCAb2+AL220=0. 

 

The result, with =W/(LxLyLzC)=109/(140·80·2)=45 kW/m3, is T1=317 K and T2=331 K. It can be checked 

that any centred distribution of (x) yields the same maximum temperature (331 K) and the same T-gradient 

at x=0, even if the dissipation width were reduced to a point in the middle (at x=150 mm).   

 

 

Fig. 2. a) Steady T(x) profile for the present case (dissipation in the range x=80..220 mm, bold red line), 

and comparison with the previous case (dissipation in the whole range x=0..300 mm, dashed blue 

line), and with a concentrated dissipation at x=150 mm (dashed green line). b) Unsteady simulation 

for several time steps; notice that there is some heat flow to the right to heat the insulated part. c) 

Unsteady simulation at several x-stages. 
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e) Solve analytically the one-dimensional steady heat-conduction problem along the combined layer 

of CFRP and battery (but not through the foam). 

 

The temperature profile over the battery segment will still be parabolic, but flatter because heat conductance 

is larger, to be merged with one straight stretch at each end. To find the T(x) profile, the same conditions 

of continuity of T(x) and Q (x), at the same interfaces (x1=80 mm and x2=220 mm) are imposed, but now 

with different properties in the stretch where the CFRP and B are in contact, i.e.: 

 At x=L80=80 mm, a1+L80b1=a2+L80b2L80
2/(2keff) and kCAb1=keffAeffb2+AeffL80. 

 At x=L220=220 mm, a2+L220b2L220
2/(2keff) and keffAeffb2+AeffL220=0. 

 

If we take the whole cross-section area, Aeff=AC+AB,  to define the effective conductivity, keff, then 

keff=(kCAC+kBAB)/(AC+AB)=(kCLzC+kBLzB)/(LzC+LzB)=(30·2+35·6)/(2+6)=34 W/(m·K), and the result, with 

=W/(LxLy(LzC+LzB))=109/(140·80·(2+6))=11 kW/m3, is now T1=317 K and T2=320 K (instead of the 

previous T2=320 K). The same result would have been obtained if we had used the original CFRP thickness 

to define Aeff=AC, and then keff=kC+kBLzB/LzC=30+35·6/2=134 W/(m·K), and =W/(LxLyLzC)= 

109/(140·80·2)=45 kW/m3. 

 

An estimation of the required time to reach the steady state, similar to the one made above but changing to 

the new thermal capacity, now yields tc=mcT/Q=(mCcC+mBcB)T/Q= 

(0,072·840+0,141·900)·(317300)/1=3200 s, enhancing the previous estimation of tc=1900 s, but still a 

lower bound because it does not accounts yet for heat losses. 

 

f) Solve numerically the one-dimensional unsteady heat-conduction problem with the temporal 

variation of the energy dissipation given. 

 

We are going to use the finite difference method (FDM), discretizing the CFRP layer in N equal spatial 

segments, and finding T(x) at the ends of the stretches, i.e. finding Ti at xi=ix with i=0..N and x=Lx/N, 

and all this as a function of time, i.e. discretizing T(x,t)= j

iT , for j=0..M at appropriate times tj=jt, to be 

defined below. Notice that Ti is the representative temperature around xi (e.g. in the dashed zone in Fig. 3). 

For stability of the explicit time-discretization, the advancing time-step, t, is bound for this 1-D case to 

Foat/(x)2<1/2, where ak/(c) is the thermal diffusivity of the material (for CFRP 

a=k/(c)=30/(1500·840)=24·10-6 m2/s), and Fo is the Fourier number for a segment. The stability criterion 

can be explained in terms of the Second Law of Thermodynamics if we imagine the thermal relaxation of 

a node at Ti with the surroundings nodes (2 in one-dimensional problems) at a lower temperature; the 

discretized heat equation can be written as cxtT/t=2kxT/x, but the Second Law forbids the temporal 

variation tT to surpass the spatial variation xT, i.e. tT<xT, implying 2at/(x)2<1 or Fo<1/2. 
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Fig. 3. Sketch of thermal nodes for numerical simulation by finite differences. 

Instead of discretizing the volumetric form of the heat equation, cT/t=k2T+, we use the total 1-D 

heat flow, xcT/t=Qin+Qout+x, with Q=kAT/x, which in a discretized form is: 

 

 
1

1 1

j j j j j j

i i i i i ixc k k A x
t x x

     
   



   
    

  
 

 

A Matlab coding to compute T(x,t) by time-steps j=1..M and spatial discretization i=1..N+1 is presented in 

Table 2 (just the iterative part; variable definitions must precede that). 

 

Table 2. Iterations for the numerical simulation in Matlab. 
j=1; T(j,:)=T0;  %Initial temperature profile T(x,t)=0 (assumed uniform) 

for j=2:M   %Time advance 

   i=1; T(j,i)=T0; %Left border (base) maintained at T0 

   for i=2:N  %Generic spatial nodes 

     T(j,i)=T(j-1,i)+(Dt/(rho*c*A))*((k*A*(T(j-1,i+1)-T(j-1,i))-k*A*(T(j-1,i)-T(j-1,i-1)))/Dx^2+phi*A); 

   end 

   i=N+1; T(j,i)=T(j-1,i-1);%Right border kept adiabatic 

end 

 

It is advisable to first solve the problem of a permanent heat release  along the whole CFRP layer, or just 

along the CFRP section in contact with the battery (i.e. with spatial discontinuity in (x)), to gain confidence 

in the numerical simulation (it is usually better to proceed by adding details to a small code than to debug 

a complex coding). For instance, to simulate a discontinuous (x), one can just change ‘phi’ to ‘phi(i)’ in 

the code of Table 2, provided that in previous sentences the raw discontinuous dissipation is defined in a 

continuous way (e.g. eps=1e-6; Xraw=[0, 0.080-eps, 0.080+eps, 0.220-eps, 0.220+eps, 0.300]; phi_raw=[0, 

0, 45e3, 45e3, 0,0], and the interpolation at the equidistant stages X=linspace(0,Lx,N); 

phi=interp1(Xraw,phi_raw,X); is applied; ‘eps’ is a small-enough displacement to smooth the 

discontinuous function, e.g. eps=1e-6). 

 

Considering the combined heat conduction between the sheet of CFRP and battery B, and taking the total 

thickness as a reference, we can calculate for the C/B set (of thickness LzCB=2+6=8 mm), the effective 

conductivity keff=(kCLzC+kBLzB)/(LzC+LzB)=(30·2+35*6)/(2+6)=34 W/(m·K), the effective density 

eff=(CLzC+BLzB)/(LzC+LzB)=(1500·2+2400·6)/8=2175 kg/m3, the effective specific heat capacity 

ceff=(cCCLzC+cBBLzB)/(CLzC+BLzB)= (840·1500·2+900·2400·6)/(1500·2+2400·6)= 890 J/(kg·K),  and 

the volumetric dissipation in the battery (relative to the volume of the local set), 

=Q/(LzBLyLzCB)=1/(0,0140·0,080·0,006)=11 kW/m3, currently considered unchanged over time. 
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Longitudinal profiles for thickness, conductivity, density, and volumetric dissipation, are shown in Fig. 4a, 

and temperature profiles (spatial and temporal) in Fig. 4b. Note the slope discontinuities in T(x) profile, and 

the fact that, in the transient state, there is a heat flow to the right (to warm the adiabatic end). 

 

 
 

 
Fig. 4. a) Longitudinal profiles for thickness, conductivity, density, and volumetric dissipation; in blue the 

discontinuous model, and in green the continuous model discretized in 30 elements of 1 cm. b) 

Evolution of the temperature profile T(x) for several moments, and T(t) for a number of equally 

spaced points. 

 

 

    
 

2

1

i i i i i i
i i i i i i i i i

i i i i i i i i i i i i

i i i

T T T T T T
c A x k A k A A x

t x x

t
T T k A T T k A T T A

c A x

 






 
   



     

  
    

  

 
       

  

 

 

Considering now that the dissipation only lasts for 30 min, with 60 min of inactivity (although this is 

impossible because the battery during charging also dissipate), the time profile of dissipation, (t), and  

Tmax(t) is shown in Fig. 5. As expected by the previous analysis for (t)=const, the typical time to reach 

steady state was about 10 000 s (about 3 h), whereas the statement indicates that the battery dissipates just 

for 30 min, so that after a cycle it does not return to the initial conditions, as seen in the evolution of Tmax(t). 

You can also see that during the 'switch off' there is a heat flow from the adiabatic edge toward the centre, 

which cools faster. 
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Fig. 5. Temporal dissipation profile, (t), spatial temperature profiles T(x) for various times, and Tmax(t). 

 

g) Solve numerically the problem of two-dimensional transient conduction from the isothermal state 

to the steady state of 1 W dissipation at the battery element. 

 

The two-dimensional planar heat equation iscT/t=k(2T/x2+2T/y2)+. When discretized by finite 

differences for a generic volume element dxdyLz (where Lz(i,j) is the thickness at each point, which in this 

case we take constant, Ly=80 mm, and with an 'extended' battery pack so that the model can be two-

dimensional; i.e. we will consider its dimensions B(140,80,6) instead of B(140,70,6)), and taking into 

account the longitudinal variations of properties, the heat equation becomes: 
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Fig. 6a shows a cut profile of the plate, with the different materials (to scale in the bottom plot), and the 

two-dimensional diagrams of densities (x,y), and specific thermal capacities c=c(x,y), on the top plot with 

the real discontinuities, and in the bottom plot interpolated with a mesh of 30 elements in x (10 mm each) 

and 16 elements in y (also of 1 mm). Fig. 6b shows the two-dimensional diagrams of longitudinal thermal 
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conductivities, kx(x,y), transversal thermal conductivities, ky(x,y), and volumetric dissipation =(x,y), not 

counting for the time variation . 

 

  

Fig. 6. a) Section of the plate, and maps of densities  [kg/m3] and thermal capacities c [J/(kg·K)]. b) Maps 

of longitudinal thermal conductivities, kx(x,y), transverse thermal conductivities, ky(x,y), and 

volumetric dissipation =(x,y). 

Finally, Fig. 7 shows some details of the simulation result, and in Fig. 8 the map T(x,y) at steady state 

(although, as already seen, if the dissipation lasts only 30 minutes (1800 s), the steady state will never be 

reached (about 10,000 s would be needed for that). 

 

Fig. 7. From left to right and from top to bottom: a) temperature profile in the upper layer of CFRP for 

several times (in the stationary state, the isolated end of the plate reaches Tmax=316 K); b) The same, 

but half the height of the sandwich (note that the central part, in contact with the battery, is also at 

316 K, but that T(x,Ly/2) decreases in the isolated end to a value almost constant because longitudinal 

heat transmission is negligible); c) temperature profile in the lower layer of CFRP for several times; 

d) Time evolution of temperatures in the 9 points of the periphery (ends and midpoints; of course, 

there is no change in the three end-points where 300 K were imposed; it can be seen that the steady 

state is reached in about 10 000 s); e) temperature profile in a section half the length (i.e. at 150 mm 

from the recessed edge, the temperature being 316 K in the top layer of CFRP and battery, and 

decreasing significantly in the 6 mm of foam, and almost nothing in the 2 mm of the CFRP-plate 

below); f) The same, but in the adiabatic end, i.e. at x=300 mm (note the small temperature jump 

between plates, due to the limited transverse heat transmission). 
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Fig. 8. Temperature map T(x,y) at the steady state. 

 

In conclusion, the maximum temperature in steady state with this detailed two-dimensional model is 

Tmax(x,y,t)=316 K (i.e. the maximum heating is 16 K), which could have been approximated with a zero-

dimensional model as explained in paragraph a). 

 

Back to Heat and mass transfer 

Back to Thermodynamics 
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