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SYSTEM STABILITY 

EVOLUTION OF AN ISOLATED SYSTEM 

In Chapter 2: Entropy, we have partially developed the fact of Nature that "an isolated system can only 

evolve towards a unique state called equilibrium state", independent of its initial state, and characterised 

by a particular internal distribution of conservative magnitudes: that of maximum average uncertainty (i.e. 

maximum entropy). 

 

For a simple compressible system, characterised by just its internal energy, U, and volume, V, the time 

evolution of its parts is dictated by the monotonous increase of entropy, S, constrained by the constancy 

of U and V (a statement of the Second Law of Thermodynamics), namely: 
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Furthermore, since, at least for small departures from equilibrium in an isolated system, the dynamics 

should be proportional to the unbalance force, the entropy function has to be quadratic in the force: 
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what is shown in Fig. 1. 
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Fig. 1. Entropy variation with time, S(t), and its rate, ( )S t .  is a characteristic non-equilibrium force (e.g. 

the averaged temperature gradient in the case of thermal relaxation). 

 

The fact that thermodynamic evolution is governed by a variational principle (the trend towards a 

stationary value of entropy, under the energy and volume constraints, (1)), is a generic behaviour of 

Nature, first enunciated by Fermat in the 17th c. for Optics: "light rays travel from one point to another by 

the path of minimum time of travel", and later developed by Hamilton in the 20th c. for Mechanics: "a 

body moves in time-space from 
1 1( , )t r  to 

2 2( , )t r  by minimising the action 
2

1

( , , ) min
t

i i
t

A L q q t dt  " 

(where L is the Lagrangian function, with units of energy, q are coordinates and p momenta). 

 

In a similar manner as for a mechanical system, thermodynamic systems can be stable or not (consider 

what a 1 mJ spark can make to a hydrogen-oxygen mixture, or the change in a hot pad when clicking the 

trigger). 

Consequences of equilibrium 

In Chapter 2: Entropy, we found the constraints on the distribution of conservative magnitudes at 

equilibrium. By means of Lagrange multipliers, we find that a first consequence of a system being at 

equilibrium is the existence of temperature and pressure as common variables shared by all subsystems k 

(at equilibrium in absence of external fields): 
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Notice that (3) only apply to systems at equilibrium, contrary to (1) and (2). 

Why temperature has to be positive 

Temperature, defined by (3), can only be positive for a real system at equilibrium, because it is a fact of 

Nature that the more energy a system has, the more quantum energy levels become accessible and thus 

the larger the entropy (the number of possible distributions), and temperature is that sensitivity; i.e., 

S(U)|V can only be positive and increasing, Fig. 2. 

 
Fig. 2. Entropy variation with internal energy, U (at constant volume), and with an unspecified non-

equilibrium parameter,  (e.g. the mean temperature gradient). Notice that from a non-equilibrium 
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state P, the equilibrium state reached is different if the evolution is at U=constant (maximum 

entropy) or at S=constant (minimum energy). 

 

The increasing monotony of the function S(U)|V implies the positiveness of 1/T=S/U|V. Furthermore, 

energy itself has to be also a monotonic increasing function of temperature at constant volume, U/T|V>0 

because otherwise the system would be thermally unstable (energy would flow from colder to hotter parts 

and entropy would decrease). Thus, the function S(U)|V is monotonically increasing with monotonically 

decreasing slope, as represented in Fig. 2. 

 

The reasoning above was based on quantum physics, but a more classical-mechanics reasoning serves the 

same goal: why temperature has to be positive. The total energy of an isolated system, E (constant), can 

be composed as the sum of internal energy, U, and kinetic energy of the motion relative to its centre of 

mass, Ek=mivi
2/2, i.e. E=U+Ek=const, and dE/dt=0=dU/dt+dEk/dt, but mechanical stability demands 

dEk/dt<0 to avoid the system to naturally explode, what forces dU/dt>0 (i.e. the expected conclusion that 

motion tends to disappear, increasing the system thermal energy), and, since dS/dt>0 for the evolution, it 

finally implies that dU/dS>0. 

Extended mechanical consequences of equilibrium 

In Chapter 2: Entropy, we showed that the consequences of equilibrium can be labelled as follows: 

 Thermal equilibrium. At equilibrium, temperature has to be uniform in all subsystems. 

Sometimes this is called Zero Law of Thermodynamics. 

 Mechanical equilibrium. At equilibrium, the only motion possible for the subsystems is as a 

solid body. 

 Chemical equilibrium. At equilibrium, the chemical potential of each species varies 

proportionally to its molar mass and the energy of the applied field, being uniform in absence of 

external fields. 

 

But the mechanicistic reasoning used above to show that temperature must be positive can be further 

extended to an isolated system with total energy E (constant), total linear momentum P  (constant), total 

angular momentum L  (constant), in a constant gravitational field, to yield: 
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with the traditional mechanical definitions of centre of mass, 
cmr , mass-averaged velocity, 

cmv , moment 

of inertia relative to an arbitrary origin, I, inertia-averaged angular speed,  , linear momentum, P , and 

angular momentum, L : 
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deducing from (4) and from dU/dS>0 that, at equilibrium, the thermal energy tends to a maximum 

compatible with the constraints (by mechanical energy dissipation by friction), and consequently the mass 
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should be the highest (but it is constant in this non-relativistic analysis), the moment of inertia should be 

the highest (i.e. deformable systems tend to rotate around the principal axis of inertia), and the position in 

the gravity field should be the lowest. As a consequence, at equilibrium, the angular speed is aligned with 

the angular momentum [2]. 

Why pressure has to be positive 

Pressure, defined by (3), can only be positive for a real system at equilibrium, because the more volume a 

system has, the more quantum energy levels become accessible and thus the larger the entropy (the 

number of possible distributions), and pressure is that sensitivity; i.e., the increasing monotony of the 

function S(V)|U implies the positiveness of p/T=S/V|U. Furthermore, since volume has to be also a 

monotonic decreasing function of pressure at constant energy (or at constant temperature), V/p|U, it 

follows that the function S(V)|U is monotonically increasing with monotonically decreasing slope, as 

represented in Fig. 2 for S(U)|V; in fact, in the case of perfect gases, both functions are quite similar: S-

Sref= mcvln(T/Tref)+mRln(V/Vref)=mcvln(U/Uref)+mRln(V/Vref). 

 

From another point of view, pressure can only be positive because, otherwise, the tendency of entropy in 

isolated systems to increase would mean that its volume would disappear; dV<0 if p<0 in pTS/V|U,ni). 

However, contrary to temperature that cannot have negative values because motion would diverge (see 

above), in liquids, negative pressures can be realised in nature if the appearance of the gas phase implied 

in the shrinking is hindered, as when the liquid is so pure that no heterogeneous nucleation can occur and 

a metastable equilibrium exists until the departure from true equilibrium is so large that homogeneous 

nucleation takes place.  

Why thermal capacities have to be positive 

The specific thermal capacity at constant volume, cv, has to be positive because of the thermal stability 

already explained when analysing why temperature was positive. From its definition, and analysing the 

evolution of the slope of S(U)|V in Fig. 2: 
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 (6) 

 

i.e., from the fact that the slope (always positive, equal to 1/T) has to decrease when energy increases, it is 

deduced from (6) that cv>0.  

 

A similar result might be obtained for the thermal capacity at constant pressure, cp, i.e. cp>0, although 

extrapolation to other cases is not granted; for instance the thermal capacity along the liquid-vapour 

saturation line can be negative.  

Why compressibilities have to be positive 

Compressibility is the effect of pressure on the volume of a system, and two compressibility coefficients 

may be defined: 
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both of which have to be positive for mechanical stability, based on 2S/t2<0 during the evolution of a 

system. The explanation is entirely similar to the one developed above for cv, i.e. to enforce that the 

equilibrium function S(V)|U is monotonic, with slope p/T monotonically decreasing with time, entirely 

similar to function S(U)|V in Fig. 2: 
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 (8) 

 

what implies that >0 ( is sometimes labelled T). 

THE METHOD OF PARTITION RELEASE 

Notice that the variable time does not appear explicitly in the consequence of equilibrium, in (3), although 

it appears in the sense that S in (3) is only the equilibrium state entropy, S in Fig. 1, whereas in (1) S is 

entropy at a non-equilibrium state. Classical Thermodynamics renounces to time details and gets ride of 

the time variable by just focusing on virtual equilibrium states, including non-equilibrium states of a 

system by considering local equilibrium of its subsystems; i.e. instead of non-equilibrium systems 

evolving with time, we consider the initial restricted equilibrium of a fine partition within the system, and 

the final equilibrium reached when the partition is released.  

 

In that way, we write the fundamental relationship for a simple compressible system at equilibrium (based 

on (3)) as: 

 

 
1

V U

S S p
dS dU dV dU dV
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 (9) 

 

We insist that you can no longer look in (9) for dS/dt>0 or d2S/dt2<0, since for an isolated system at 

equilibrium dU/dt=dV/dt=dS/dt=0; Eq. (9) should be read as: "for a system at equilibrium, there is a 

surface S(U,V) of possible equilibrium states (corresponding to different energies and volumes), with 

local slopes 1/T and p/T along the axes, indicating the changes in equilibrium entropy due to virtual 

displacements in the independent variables U and V" (virtual changes refer to considering slightly 

different system, since U and V cannot changed in an isolated system). 

The simplest partition: one small subsystem in a large isolated system 

We can simplify the reasoning by considering the universe (the isolated system) to be composed just of 

two subsystems at equilibrium, a small one that we name without subindex, and a much larger one which 

we subscript as 0. We now recover the whole meaning of entropy not only as the equilibrium entropy of 

the subsystem, S, but also as the non-equilibrium entropy of the universe, Suniv=S+S0, to relate (1) and (9): 
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and regain the known consequences of equilibrium, stated in (3): when the whole system reaches its 

equilibrium state and its entropy can no longer increase (Suniv/t=0), temperature, and pressure in 

absence of external force fields, must be the same in all subsystems, i.e. T=T0 and p=p0.  

 

But the inequality in (10) teaches more: it shows that at a non-equilibrium state, the variation of the 

energy of a system at constant volume, dU/dt, must be of the same sign as its preceding parenthesis in 

(10); i.e. if T<T0 (i.e. the small subsystem is colder than the larger one) then dU/dt>0 (i.e. the small cold 

system gets energy from the warmest). Similarly, assuming that the system is isothermal, if the small 

system has more pressure, p>p0, then its volume tends to increase, dV/dt>0. 

Fluctuations and virtual displacements 

Thermodynamic equilibrium is a microscopically dynamic process, with small random local deviations in 

energy, volume and entropy of the subsystems. We here consider those real fluctuations or similar virtual 

displacements of the energy and volume of a subsystem in the whole isolated system.  

 

Energy and volume fluctuations in the small subsystem, dU and dV, can be positive or negative, and 

cancel in the whole, dU+dU0=0 and dV+dV0=0, but entropy fluctuations in the whole, dS+dS0, can only 

be negative in the second approximation (to a first approximation it is zero because there is a local 

maximum; i.e. dSuniv=0 but d2Suniv<0). Taylor expansion around the maximum, gives: 
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 (11) 

 

with the following interpretation. The first bracket, where the relations dU=dU0 and dV=dV0 have been 

introduced, has been described above: it implies that at equilibrium T=T0 and p=p0, and consequently 

dSuniv=0. The second bracket, where the relations dU=dU0, (dU)2=(dU0)
2, dV=dV0, and (dV)2=(dV0)

2 

have been introduced, is a quadratic form that must be negative definite because d2Suniv<0, what implies 

in the first term: 
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and similarly 
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which implies cv>0 and >0, as presented above. 

LE CHÂTELIER PRINCIPLE 

A general conclusion on system stability can be formulated in terms of a generalised Le Châtelier 

Principle like that: "if a system is perturbed in one of its state variables, the system responds trying to 

counterbalance the effect and regain the initial equilibrium" (if the system cannot come back to the initial 

state, it is said to be unstable; all systems become unstable against large enough perturbations). 

GENERAL STABILITY OF THERMODYNAMIC SYSTEMS 

For generic thermodynamic systems whose fundamental energy equation is dU=xidXi, the following 

relations apply: 

 Derivatives of any intensive variable, xi, with respect to its extensive corresponding variable, Xi, 

are always positive for any process that keeps constant the rest of extensive variables or their 

conjugates: 
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 From the two analogue derivatives, i.e. the ones that only differ in the conjugate variable kept 

constant, the one where the extensive variable is kept constant is larger than the other: 
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In fact, it can easily be demonstrated that: 
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As example of dU=xidXi equations, a list of terms are here added to the thermal and compressibility 

terms, TdS and pdV: dU=TdSpdV+idni+dA+FdLMd+EdP+HdM+VdQ+id(V0i); i.e. the 

chemical terms for each species idni, a surface tension term dA, a linear stretching term FdL, a 

torsional twisting term Md an electrical polarization term EdP, a magnetic induction term HdM, an 

electrical capacitance term VdQ, and the elastic terms id(V0i), where i and i are the six components 

of the stress and strain tensors (that are symmetric), and V0 the volume of the undeformed solid.. 

 

The consequences of system stability can be then stated as follows: 

 Thermal stability. At equilibrium, T, cv, cp and  have to be positive, with cp>cv and  >1. 

 Mechanical stability. At equilibrium, p,  and S have to be positive, with  >S. 

 Chemical stability. At equilibrium, the chemical potential of each species increases 

monotonically with its concentration, since from (9) i/ni|U,V>0. 

 

A statement of the stability criteria is second differential of equilibrium entropy in terms of its main 

variables has a negatively-defined quadratic form: 
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(17) 

 

Another similar statement can be cast in terms of the internal energy variations for a constant entropy and 

constant volume system: 
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 (18) 

 

However, extrapolation to other thermodynamic potentials may be chocking. For instance, for a 

subsystem undergoing an evolution at constant temperature and pressure in the presence of a much larger 

subsystem, the whole being isolated, the potential that governs the process is Gibbs function of the small 

system, G(T,p)=U+pVTS, with dG=SdT+Vdp. If the small system is displaced from equilibrium, the 

evolution, constrained as always by increasing the entropy of the universe, dSuniv=dS+dS0>0, now is 

equivalent to dG<0, as can be easily demonstrated since dSuniv=dS+dS0= 

dS+(dU0+p0dV0)/T0=dS(dU0+pdV0)/T=dG/T>0. But, contrary to the former potentials S and U, now it is 

dG/dt<0 and d2G/dt2<0, instead of e.g. dU/dt<0 and d2U/dt2>0, as shown in Fig. 3, i.e. dG=TdSuniv<0 but 

also d2G=TdS2
univ<0. 
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Fig. 3. Differences between 'extremisation' of different thermodynamic potentials.  is an unspecified 

non-equilibrium parameter (e.g. the mean temperature gradient). The arrow shows the direction of 

evolution with time from a non-equilibrium state, P, towards the equilibrium state (a extremum in 

the potential). 

 

and consequently, the second variation is now: 
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