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THERMODYNAMIC POTENTIALS AND PROPERTIES 

We deal here with two thermodynamic subjects that in most other presentations are separately covered: 

'Properties of pure substances', usually covered at the very beginning of Thermodynamic courses, and 

Potentials or 'General relations', usually covered at the very end of Thermodynamic courses. In our view, 

it is better to deal at the same time with the functional structure of Thermodynamic (which functions are 

needed and how others relate to them) and the actual models and particular values for those functions (the 

material properties of selected substances). If not, one might end without realising the minimum set of 

properties which define the thermodynamic behaviour of a substance, or the many important relations 

amongst them, as the relation between vaporisation enthalpy and vapour pressure data, the relation 

between the speed of sound and density data, etc. 

 

It may be argued that the combined presentation of Potentials and Properties is too wide, but one may do 

a short combined presentation (even shorter than here done) and leave most details for discussion under 

other headings to follow: Phase changes, Real gases, Mixtures, etc. 
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Briefly, the aim here is to place on a common field the two isolated models of perfect gases and perfect 

liquids that we have freely used, showing how one can model any possible behaviours of a substance at 

any state, primarily for pure substances, but opening the door to any kind of mixture. 

THERMODYNAMIC POTENTIALS. SYSTEM EQUILIBRIUM 

An isolated system is at equilibrium when its entropy is a maximum, but what about a non-isolated 

system? 

 

We  have introduced many state variables, like E (or U), V, S, T, p, i, and , others being not state 

variables but path integrals, like W, Q, Emdf, Sgen and I. These state variables (many of them only defined 

at equilibrium states), and many others we intend to introduce to ease our thermodynamic analysis, are 

not all independent. In fact, the number of intensive independent variables at equilibrium, what is known 

as the variance of the system, is just 2 for simple compressible systems (without change in composition), 

and 2+C1 for a single-phase multicomponent system with C different chemical species, as deduced in 

Chapter 2: Entropy, where we got T, p and i, (1+1+C) as intensive variables defining the equilibrium, 

and we got the Gibbs-Duhem equation as their only constraint.  

 

Thermodynamic potentials are single functions of some variables (call them their eigenvariables) from 

which all other equilibrium variables can be deduced. The genuine thermodynamic potential is entropy, 

from which T, p and i were derived in (2.4-5). We call eigenvariables the variables that were kept 

constant during the evolution towards equilibrium; in the case of entropy they were, U, V and ni, thus, the 

genuine thermodynamic potential is S(U,V,ni), and its total differential form dS=(1/T)dU+(p/T)dV-

(i/T)dni. From the many thermodynamic potentials one may define, we only consider the four energetic 

potentials: 

 

 Internal energy: U(S,V,ni), dU=TdS-pdV+idni (4.1) 

 Enthalpy: H(S,p,ni)U+pV, dH=TdS+Vdp+idni (4.2) 

 Helmholtz function: A(T,V,ni) UTS, dA=SdT-pdV+idni (4.3) 

 Gibbs function: G(T,p,ni) U+pVTS=HTS=ini, dG=SdT+Vdp+idni (4.4) 

 

where Euler equation (2.13) has been used in (4.4). Any of the above thermodynamic potentials, as a 

function of its eigenvariables, contain all the thermodynamic information of the equilibrium states, and 

may be physically interpreted in a similar manner as entropy: entropy was a function that got extremal 

(maximum) as a system with constant U, V and ni (the eigenvariables) evolved towards equilibrium; 

similarly, internal energy is a function that gets extremal (minimum in this case, Fig. 4.1) as a system 

with constant S, V and ni (its eigenvariables) evolved towards equilibrium; similarly, enthalpy is a 

function that gets extremal (minimum) as a system with constant S, p and ni (its eigenvariables) evolved 

towards equilibrium; and so on.  

 

Figure 4.1 helps to visualise the change from the entropy potential (that is maximum at equilibrium) to 

the internal energy potential (that is minimum at equilibrium). 
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Fig. 4.1. Entropy variation with internal energy, U, and another unspecified non-equilibrium parameter,  

(e.g. a gradient of temperature). Notice that from a non-equilibrium state P, the equilibrium state 

reached is different if the evolution is at U=constant (maximum entropy) or at S=constant 

(minimum energy). 

 

From the Mathematics point-of-view, the different potentials are just Legendre transformations as used in 

other disciplines, as the change from the Lagrangian to the Hamiltonian function in Mechanics. In fact, 

the existence of potential functions is not genuine of Thermodynamics but a general rule in all branches 

of Physics, where one (the observer) tries to establish simple laws of Nature as: "this variable does not 

change with time' or 'this variable takes a extremum value between two instants in time". 

 

The interest in using these new thermodynamic functions lies in the following facts: 

 Enthalpy, H, named by Kamerlingh Onnes in late 19th century as 'heat function', directly measures 

the heat exchanged by a closed system in an isobaric process (the most common case in all 

practical heat transfer cases), and directly measures heat-and-work exchange in flowing systems 

(the most important systems in engineering). The basic idea to keep in mind is that enthalpy-

change, H, is the sum of energy-change, U, plus the work of expansion, pV. 

 And A and G (traditionally named 'free energy' and 'free enthalpy', respectively), directly measure 

the exergy of a process at T-and-V constant, and at T-and-p constant, respectively, the latter of key 

interest for processes in the presence of an environment like the Earth atmosphere that can be 

assumed to keep constant T=T0 and p=p0. 

 

An isolated system evolves trying to maximise its entropy, at constant energy, but practical systems 

interact with their surroundings (perfect isolation is a limit idea), and tend to minimise the 

thermodynamic potential appropriate to their interaction with the environment. Thence: 

 Isolated systems evolve such that dS/dt>0 (with dU/dt=0). 

 Non-dissipative rigid systems evolve such that dU/dt<0 (with dS/dt=0). 

 Real practical systems in an environment at constant T and p evolve such that dG/dt<0. 

 

This is, for instance, why a liquid system (e.g. water in a closed evacuated flask) reaches an equilibrium 

without all changing to a liquid state (that has less energy) or all changing to gas (that has more entropy); 

instead, a two-phase liquid-vapour equilibrium is established such that both effects balance: 

Gliq,vap=Hliq,vapTSliq,vap=0 (it will be shown as an Exercise in Chapter 9 that this corresponds to 

T=373 K for water at 100 kPa). Notice also a general rule that can be deduced from dG=dHTdS<0: as 

temperature increase, processes that increase entropy (mixing, gasification, decomposition, dissociation, 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c09/Chemical%20reactions.pdf
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ionisation) are favoured against processes that decrease energy (that is also why water droplets and 

oxygen molecules do not separate from lighter nitrogen molecules in the air). 

EQUATIONS OF STATE AND THERMODYNAMIC COEFFICIENTS 

Any of the thermodynamic potentials (e.g. G=G(T,p,ni)) holds all the thermodynamic information about a 

system at equilibrium. If we call equations of state (EOS) to its partial derivatives (G/T, G/p, 

G/ni), the set of all of them plus an irrelevant integration constant (because only increments of the 

potential function were defined) also hold all the information. We will also introduce some functions 

directly related to the second partial derivatives of the thermodynamic potentials, and call them 

thermodynamic coefficients because they do not change much with the state; similarly, the set of all 

thermodynamic coefficients plus two integration constants (one of them irrelevant) also holds all the 

information about a system at equilibrium. Taking Gibbs potential because its eigenvariables are the more 

natural, one gets from (4.4) 
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But not all the equations of state are independent since they come from a single potential function and 

thus must verify that crossed second derivatives match, a mathematical property of analytical functions 

known as Schwarz relations in Mathematics and as Maxwell relations in Thermodynamics. That means 

e.g. that: 
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and this is the reason why for systems of constant composition there is only need of one equation of state, 

chosen as the V=V(T,p) and simply named 'the equation of state' (but notice that it has not all the 

information; it remains S/T). 

 

From the second partial derivatives of the potentials we define the following so called thermodynamic 

coefficients: 

 

 Specific (by unit of mass) or molar (by unit of amount of substance) isobaric thermal capacity:  
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 Isobaric thermal expansion (dilation): 
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 Isothermal compressibility (similarly, an isentropic compressibility is also introduced): 
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Exercise 1. Compatibility of equations of state 

SYSTEM STABILITY 

A system will evolve if some internal restrain is released (initial non-equilibrium) or if some constrain at 

the frontier is imposed (boundary non-equilibrium). We know that for an isolated system, an equilibrium 

state will be finally reached, although it might take longer than our life span (we call metastable 

equilibrium when the system appears to be stable for finite times under small enough disturbances). 

Stable systems return to their initial equilibrium state after a small perturbation is applied. Unstable 

systems move away from their initial equilibrium state to a distant equilibrium state after a small 

perturbation is applied, although metastable states may require a sizeable perturbation to become 

unstable. In Thermodynamics, when a system gets unstable (as when heating water a lot), a new phase 

appears (e.g. vapour), or new chemical compounds form, with different properties than the initial system 

(different densities, different compositions, etc.), i.e. a different equilibrium is reached. 

 

Besides indicating when a system becomes unstable and phase transitions appear, the analysis of the 

stability teaches some general conditions for the thermodynamic functions. At a stable equilibrium, d2S<0 

implies that T>0, p>0 and >0, as well as cp>0 (thermal stability), >0 (mechanical stability) and 

i/nj>0 (chemical stability). Notice that no restriction holds on dilation, , which, although usually 

positive, may be negative as in the case of pure water between 0 ºC and 4 ºC (there is some restriction, 

really, because from the generalised Mayer equation, cp-cv=2vT/ (see below) and the stability 

conditions one may concludes that 2<cp/(vT)). A more extensive analysis of System stability can be 

found aside. 

 

From now on till the study of Mixtures (Chapter 7) we only consider constant-composition systems, i.e. 

evolutions that keep ni=constant, what applies to pure chemical substances, and to closed mixtures 

without phase change, and, of course, without chemical reactions in any case. 

GENERAL DEPENDENCE OF STATE FUNCTIONS 

Many variables have been defined to characterise equilibrium states, and still some others are currently 

used, as the heat capacity at constant volume:  
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and the ratio of heat capacities: 
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http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise1.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/System%20stability.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/System%20stability.pdf
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also known as isentropic exponent because of its appearance in (1.13) (and sometimes also isentropic 

coefficient although it can be distinguished from a more general definition of the latter as k≡∂lnp/∂lnv|s, 

coinciding with the heat-capacity ratio in the ideal gas model). 

 

Also a variable directly related to the isentropic compressibility can be defined that later will be shown to 

correspond to the speed of propagation of small perturbations (the speed of sound), c: 
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Finally, a variable called compressibility factor (not to be confused with the compressibility coefficient) is 

introduced as: 
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where R is the gas constant. But as said before, there are only two intensive state variables independent, 

and all the others can be expressed as functions of these two. The natural choice for the two independent 

variables is T and p, and the general dependence of the others, based on the definition of the coefficients 

and on Maxwell relations) is as follows: 
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after which the following relations can be obtained: 
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where the isothermal speed of sound, cT, is also shown for historical reasons (it is no longer used after 

experiments show that the actual speed of sound coincides with the isentropic model proposed by Laplace 

and not with the isothermal model proposed by Newton). 

 

Notice that (4.24) gives the general dependence of cp(p) and cv(v) on the EOS f(p,v,T)=0 (cp(T) and cv(T) 

are unrelated to the EOS). For instance, if the EOS is of the form v=Tf(p), like for ideal gases, v=RT/p, 

then d2v/dT2|p=0 and cp cannot depend on p, whereas if the EOS is of the form p=Tf(v), like for ideal 

gases, p=RT/v (and for the van der Waal EOS too), then d2p/dT2|v=0 and cv cannot depend on v. Another 

way to find the dependence of energy functions on non-thermal variables may be obtained from (4.18-

22): dh=cpdT+(vTv/T|p)dp and du=cvdT+(Tp/T|vp)dv. 

 

Another variable of interest in isenthalpic expansions is the Joule-Kelvin coefficient, named for James 

Prescott Joule and William Thomson (later 1st Baron Kelvin) who established the effect in 1852 

elaborating earlier work by Joule on gas expansion at constant internal energy). The Joule-Kelvin or 

Joule-Thomson coefficient, JK or JT, is defined as: 
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Usually, the Joule-Kelvin coefficient is positive and a gas cools a little when throttled (isenthalpic 

expansion), what may be used for refrigeration (e.g. at room temperature, JK=2.2∙10-6 K/Pa for air, 

JK=4.4∙10-6 K/Pa for CH4, JK=11∙10-6 K/Pa for CO2, JK=28∙10-6 K/Pa for NH3, JK=0.34∙10-6 K/Pa for 

H2), but above a certain temperature, called inversion temperature (which depends on pressure) the 

coefficient becomes negative, and a decrease in pressure causes an increase in temperature. The J-K 

cooling may be important; e.g. if nitrogen from a bottle at 20 MPa and 300 K is let to flow along a 

thermally-insulated porous plug to 100 kPa, the escaping gas is at 270 K (below 0 ºC). Be aware that the 

inversion temperature just mentioned relates to T/p|h=0, which is unrelated to the temperature inversion 

defined in meteorology, dT/dz=0 (i.e. the condition in which the temperature of the atmosphere increases 

with altitude instead of the normal decreasing. 

 

Besides the above state variables, density (=1/v), exergy (that is a combination of system and 

environment variables as in (3.6)), mechanical energy (that is independent of the internal equilibrium 

state), total energy (that is the sum of internal energy and mechanical energy), some other mechanical 

variables (as the velocity or the height of the system), and a few physicochemical state variables to be 

https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect
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introduced later, Thermodynamics makes use of a few path integrals (not state functions): work, heat, 

entropy generation and irreversibility. And the omnipresent universal gas constant Ru=8.314 J/(molK), 

that enters because of the arbitrary choice of Avogadro number (the number of entities taken as unit of 

amount of substance). Notice, by the way, that as no distinction is made on the writing of intensive 

variables (e.g. v is used for both specific volume and molar volume), so no distinction is made on the 

writing between the universal gas constant (the molar value given above) and the gas constant for a given 

substance, RRu/M, where M is the molar mass of the substance. 

 

Exercise 2. Generalised Mayer relation 

Exercise 3. Sound speed in air and water 

THE MATERIAL DATA NEEDED BY THERMODYNAMICS 

THERMODYNAMIC MODELS OF SUBSTANCES 

We concentrate here on models for pure substances, leaving to Chapter 7: Mixtures, the modelling of 

mixtures (in terms of pure substance models). 

 

It was said at the beginning of the Chapter that any potential function holds all the material properties of a 

system at equilibrium, but it is unusual to find the thermodynamic data in such a form, except for the most 

accurate reference data, nowadays compiled as a multiparameter empirical fitting of Helmholtz potential 

A(T,). Most usually, the data are presented in two functions (T,p) and cp(T,p0), or in non-dimensional 

form as Z(T,p) and cp(T,p0)/R, and always for a restricted region of validity in the T-p field. For the 

condensed states of a substance p0=100 kPa is usually taken, but for the gaseous states (and condensed 

states based on it), it is preferred to base the data on p00 since in this limit =p/(RT) and cp/p=0.  

 

Before stating any particular model, an important idea to keep in mind is that "there isn't any model 

covering all real details", a truth not only for thermodynamic data, but for any human-conceivable model. 

Empirical models can be very accurate on the small domain covered by the experimental data used to fit 

the parameters in the model, but they are usually nonsense when extrapolated. Theoretical models, based 

on molecular models and statistical mechanics, may be not so accurate, but they have fewer substance-

dependent parameters, these parameters have physical meaning, and extrapolation may be good enough. 

Sometimes, however, this dichotomy is arbitrary, since there are semi-empirical equations, which 

combine features of theoretical and empirical equations (e.g. Antoine's equation versus Clausius-

Clapeyron vapour-pressure equation, Redlich-Kwong versus van der Waals equation of state, or the virial 

expansion). 

 

It is also customary to present the material data in a graphical form because the human brain works very 

well with graphics (but computers deal much better crunching numbers than recognising graphical 

patterns). The two functions, (T,p) and cp(T,p0), can be studied separately because their modelling is 

different, but we have preferred here to deal with complete models at once. 

 

Brief, thermodynamic computations today are done manually when using simple models, or automatically 

for more accurate predictions using long lists of coefficients and some kind of polynomial or other type of 

function fitting of experimental data, and graphics may be used to plan or check computations. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise2.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise3.pdf
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Amongst the most simple data models, we have the following ones (the recommendation is, as for any 

model, to use the simplest model producing acceptable results): 

Perfect liquid model 

The perfect liquid model, PLM (perfect here means cp(T,p0)=c=constant), is also applicable to solids, and 

is: 

 

 PLM: (T,p)==constant, and cp(T,p0)= c=constant (4.28) 

 

A table of liquids and solids with their  and c values is presented aside. No subindex is given to the 

thermal capacity here because with this model cp and cv coincide (and =0 and =0); this approximation 

may be judged by the case of water at 25 ºC and 100 kPa: cp=4185 J(kg·K) and cv=4140 J(kg·K), just 1%. 

Incompressible liquid model 

The incompressible liquid model, ILM (not much used; incompressible here means =constant; it also 

applies to solids), is: 

 

 ILM: (T,p)= =constant, and any cp(T,p0), usually c(T,p0)=aiT
i with ai constant(4.29) 

 

As an example, for liquid water at 100 kPa, c is nearly 4220 J/(kg∙K) at both 0 ºC and 100 ºC, with a 

minimum of 4180 J/(kg∙K) at around 35 ºC. For liquid water at its vapour pressure, c=4500 J/(kg∙K) at 

200 ºC, 5600 J/(kg∙K) at 300 ºC, growing to infinity at the critical point (374 ºC). Notice that it may be 

inconsistent to account for T-changes on thermal capacity and not on density. 

Dilatable liquid model 

The dilatable liquid model, DLM (used in dilatometric and thermoelastic problems), also applicable to 

solids, is: 

 

 DLM: (T,p)=0[1- (T-.T0)], with 0 and  constant, and  any cp(T,p0) (4.30) 

 

A list of thermal expansion coefficients is presented aside. Notice that linear expansion coefficients, 

lin≡(1/L)L/T|p=vol/3, are commonly tabulated and used in connection with solid materials (because 

only their main dimension is of interest), whereas volumetric expansion coefficients (4.10) are always 

used for fluids. In spite of the fact that for Materials Engineering the basic thermal data are thermal 

expansion and thermal conductivity, only trivial problems of dilatometry are usually tackled in 

Thermodynamics, leaving real thermoelastic problems (including thermal shock and thermal crack) to be 

analysed in Elasticity and Materials Science. When designing structures, mechanisms, and even coatings, 

it is important to account for expansion joints (if not, they will be established by themselves!). Notice, for 

instance, that reinforced concrete works well because steel-rods and concrete have similar expansion 

coefficients, =12·10-6 K-1; otherwise tensions and cracks would develop when the temperature changed. 

Notice also that expansion may be due to other than thermal phenomena, as to moisture (e.g. moist wood 

expands, but moist ropes contract).  

 

http://imartinez.etsiae.upm.es/~isidoro/dat1/eLIQ.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/eLIQ.pdf
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As an example, consider what might happen if a steel reservoir were totally filled with gasoline at a 

certain temperature (e.g. 20 ºC), after some heating or cooling (e.g. by 10 ºC). The thermal expansion of 

steel is linear=12∙10-6 1/K whereas for gasoline it is about vol=900∙10-6 1/K, what shows that, as in most 

cases, liquid reservoirs can be considered rigid relative to the thermal expansion of the liquid. 

 

On heating, two problems may arise, depending on if the reservoir is open or closed. If open, the 

expanding liquid would overflow in the amount V=VT, where V is the volume of the reservoir, with a 

risk of an open fire. If closed, a pressure rise of p=VT / would result, probably breaking the 

reservoir. 

 

On cooling, two problems may arise, depending on if the reservoir is open or closed. If open, the 

contracting liquid would ingest an amount of ambient air V=VT, with a risk of an internal explosion 

in the event of a spark. If closed, the contracting liquid would produce a void up to the vapour pressure of 

the liquid; in spite of the high vapour pressure of gasolines (they are mixtures with composition varied 

from winter to summer) would surely collapse the a thin-wall reservoir. 

 

Exercise 4. Effect of thermal expansion on a pendulum  

Perfect gas model 

The perfect gas model, PGM, is the model most used in Thermodynamics. Perfect here means 

cp(T,p0)=cp=constant, besides being an ideal gas. This model is: 

 

 PGM: ( , )
p

T p
RT

  , (or more usually pv=RT), and cp(T,p0)= cp=constant (4.31) 

 

A data table of gases is presented aside, giving their molar mass M to compute RRu/M, their thermal 

capacity cp, and some other properties.  

Ideal gas model 

The ideal gas model, IGM, usually refers just to the equation of state, but we said we only consider full 

models (equation of state and thermal capacity). This model can be based on the dynamics of point-like 

particles non-interacting among themselves, except for collisions. Notice that here 'ideal' means =p/(RT), 

or in the more usual form pv=RT, whereas in Fluid Mechanics 'ideal' usually means inviscid. The 

complete model is: 

 

 IGM: ( , )
p

T p
RT

  , and any cp(T,p0), usually cp(T,p0)=aiT
i with ai constant(4.32) 

 

A table of gases with their molar thermal capacity as a function of T, for very small pressures, p0, is 

presented separately under Thermal data. Notice that, although cp(T,p0) is monotonically increasing, a 

minimum appears at finite pressure values and low temperature; e.g. for dry air at 100 kPa, cp=1040 

J/(kg·K) at 100 K, cp=1007 J/(kg·K) at 300 K, and cp=1141 J/(kg·K) at 1000 K. 

Van der Waals model 

The van der Waals model, VWM, is: 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise4.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/eGAS.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/eCp.pdf
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 VWM:  2

a
p v b RT

v

 
   

 
, with a and b constant, and any cp(T,p0) function (4.33) 

 

This model is the simplest one that can be used for the whole fluid range (gas and liquid regions), 

although it is more of academic interest than for real computations (its accuracy is not good). For this and 

most other models, no simple explicit expression for the density exists; this is a cubic equation of state in 

v (there have been many other cubic equation of state proposed, as Redlich-Kwong's, below). Other forms 

of (4.33) are Z=v/(vb)a/(vRT) and v3(b+RT/p)v2+(a/p)vab/p=0. 

 

Van der Waals proposed that equation of state in 1875 trying to enhance the ideal gas model, pV=mRT, to 

incorporate two effects: the finite volume of the particles, and their attractive force. For the former effect, 

he proposed to replace the whole volume of the reservoir by the free volume available to the particles, 

once their own volume subtracted, i.e. passing from pV=mRT to p(VNd3/6)=mRT, with N being the 

number of particles and d their diameter, assuming rigid spheres; notice that by experimentally measuring 

b for a substance, with (4.33), one can work-out the size of the molecules by b=NAd3/6, NA=N/n being 

Avogadro's number). As for the second effect, he proposed to replace the actual pressure, p, in pv=RT, by 

the ideal pressure the particles would impose on the walls (which would be higher in absence of their 

mutual attraction), p+pattr, with pattr being proportional to the density of particles, squared to account for 

the surface effect (i.e. a spherical shell of particles pulling from a central particle, pattr1/v2, what finally 

yields (4.33). Notice that by experimentally measuring a for a substance, with (4.33), one can work-out 

the characteristic energy of interaction, 0, for the important Lennard-Jones potential: 

u=40[(r0/r)12(r0/r)6], with r0=d/2 being the molecular radius, r the intermolecular distance, and u the 

interaction energy between two molecules. 

Van der Waals reduced model 

The van-der-Waals reduced model, VWRM, is the simplest universal analytical model, i.e. a model 

independent from the substance, whose properties only enter as scaling factors. This is a two-parameter 

equation of state, obtained by analytically solving for the constants a and b in (4.33) in terms of the p-T-

values of the substance at its critical point (TCR and pCR, to be explained below), to yield (see Problem 5): 

 

 VWRM:
2

3 1 8

3 3
R R R

R

p v T
v

  
    

  
, and any cp(T,p0) function (4.34) 

 

Any other bi-parametric equations of state could be used in reduced variables in a similar way, as for 

instance Redlich-Kwong's, but the numeric results would be different to the 3 and 8/3 in (4.34). In any 

case, all these reduced analytical universal models are inaccurate and only of academic interest. 

 

Exercise 5. Van der Waals equation in reduced form 

Redlich-Kwong model 

The Redlich-Kwong model, RKM, proposed in 1949, is reputed to be one of the most accurate among all 

two-constant equations of state, also called van-der-Waals' derived equations (VWM extensions); 

nevertheless, deviations of saturated liquid molar volume for a wide variety of substances lay typical 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise5.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise5.pdf
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within (2020)% of experimental values (for the whole temperature range). This model is a VWM 

correction to the attractive term in (4.33), a/v2, and, as most attraction-term extensions, is cubic in v. 

(extensions to the repulsive-term in (4.33), vb, yield non-cubic equations). The Redlich-Kwong model 

is: 

 

 RKM: 
 

 
a

p v b RT
v v b T

 
   

  

, with a and b constant, and any cp(T,p0) function(4.35) 

Virial expansion model 

The virial expansion model, VEM (from Lat. vis, force), proposed by Kamerlingh-Onnes in 1912, gives 

an asymptotic series expansion to the thermal equation of state; i.e., we know that in the limit of very low 

pressure (above absolute zero temperature) all substances become ideal gases, pv=RT (or Z=1), so it is 

natural to expect that the real behaviour can be approach by an expansion on pressure (or in the inverse of 

molar volume): 

 

 VEM: 

2

2

either 1 ...

' '
or      1 ...

Z Bp Cp

B C
Z

v v

    



   


, with B=B(T), C=C(T)..., and any cp(T,p0) function(4.36) 

 

The simplest virial equation only retains the second term (B(T) or B'(T), B'(T)B(T)), what yields a 

quadratic equation in v (not a cubic one, as for VWM, RKM and many others). It happens that the second 

virial coefficient is negative for low temperatures and positive for high temperatures, showing the 

dominance of intermolecular attraction over repulsion at low temperatures, and vice versa; e.g. when van 

der Waals equation is expanded in v, one gets Z=1+(b-a/(RT))/v+b2/v2+... 

Corresponding states model (introduction) 

The molar volume of a fluid, v, at a given state, T-p, depends a lot on the particular fluid at hand, but it is 

found in practice that if all values are scaled with values at the critical point of that substance, results are 

quite similar, i.e. v/vCR=f(T/TCR,p/pCR) is only slightly dependent on the substance, what may be used as 

an approximate prediction of p-v-T values based solely on critical point properties, and, of course, the 

particular equation of state used (the function f). Any equation of state could be used to build such a 

universal p-v-T plot of 'corresponding states’, as the VWRM presented above, but the most widely used 

corresponding states model, CSM, and the only one deserving that name here, is to be a graphical plot 

drawn by graphically fitting experimental data from several substances on a Z-pR diagram. Because of the 

practical difficulty to differentiate and integrate graphically, auxiliary graphics are presented to help 

compute enthalpy and entropy changes, as explained in the analysis below. 

 

The CSM is universal except for the scaling in terms of TCR and pCR (i.e., applicable to any substance 

without requiring special data about it, other than TCR and pCR), it is simple (not requiring heavy 

computations but a look-and-see graph) and the most accurate of the models just presented (typical 

uncertainty around 5% except near the critical point), justifying a detailed description here, after the 

properties of a pure substance are first presented.  

 

http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_ZpR_CSM.jpg
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The corresponding states model can also be applied to the liquid state, but the uncertainty can be large. 

Some useful correlations for reduced liquid densities, R=/cr, at saturation, are R=1/Zcr
(1TR)2/7

, and 

R=1+(3/4)(1TR)+(7/4)(1TR)1/3, the latter due to Guggenheim (1940s), who also proposed 

R,V=1+(3/4)(1TR)(7/4)(1TR)1/3 for the reduced vapour density at saturation (for TR>0.5). 

 

A key point in evaluation the goodness of a thermodynamic model for a fluid is its ability to yield 

accurate vapour pressure data, what is best understood by using phase-change diagrams shown below. 

PROPERTIES OF A PURE SUBSTANCE AND THEIR GRAPHICAL PRESENTATION. DIAGRAMS 

Simple pure substances 

Thermodynamic problems usually focus on simple chemically-pure substances and their mixtures, mostly 

fluids: water, air, alcohols, short-chain hydrocarbons, and the like. A substance is a chemically identified 

pure or mixed matter (solid or fluid): water, wine, oil, blood, DNA. A large share of substances of 

practical interest are molecules composed of just hydrogen, H, and C, N, O and F atoms (see the periodic 

table); including the lower row, Si, P, S and Cl one covers practically all fluids of interest.  

 

Substances with small molecules show well-defined phase-transition points (e.g. 273 K and 373 K for 

solid-liquid and liquid-gas transitions of pure water at 100 kPa without kinetic effects), whereas 

substances with large molecules (macromolecules usually refers to M>>1 kg/mol, i.e. with more than 100 

atoms per molecule) do not show so sharp phase-transition points, and are only stable in condensed form 

because they chemically decompose on heating, before boiling. 

 

Materials are solid bodies with intrinsic properties (apart of the shape) that render them useful, mainly for 

structures, but also for electronics, optics, biomedicine, etc. They are usually classified in terms of 

physical behaviour as: ceramics, metals, polymers and composites; although other times they are 

classified in terms of their application (structural materials, electronic materials, and so on).  

 

Except for air and water that are ubiquitous, most other working substances are procured from a local 

supplier, what may be a nuisance for 'special-container substances' like gases (there are some additional 

notes on natural and commercial gases aside). 

 

Of course, the 'pure substance' is just an idealisation: there are always impurities in any real substance, 

but a 90%-pure substance (10% impurities) may be good enough for some purposes, a 99%-pure 

substance is usually named 'commercially pure', and a 99.99%-pure is usually referred as 'laboratory 

pure', although it depends a lot on the application (e.g. in the electronics industry, sometimes 6 nines are 

required, i.e. 99.9999% purity, less than 1 ppm of impurities). Besides, if there is no segregation within a 

mixture during a thermodynamic process, the mixture may be treated as a pure substance, as usually made 

with air (until segregation of one of its components, water vapour, is studied in the Humid Air chapter.   

 

Properties of matter (as a system of N elementary particles of type say a) may be of three general types: 

constitutive, if only depend on a; colligative, if only depend on N; and additives, if they depend on the 

product of N and an attribute of a (e.g. mass, momentum, energy, entropy). 

 

http://www.webelements.com/
http://www.webelements.com/
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Gases.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Gases.pdf
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Simple chemically-pure substances, like water, usually have simple molecules, i.e. of a few atoms, and 

their thermal behaviour is as follows (think on a cylinder-piston system to avoid contact with ambient 

air). At low enough temperatures (near T=0 K) they are all crystalline solids (except the rarity of quantum 

helium). When the solid is heated enough, it always melts at a precise temperature known as melting 

temperature, Tm (or freezing temperature, Tf), which depends very little on pressure. When the liquid is 

heated enough, it boils at a precise temperature known as boiling (or condensing) temperature, Tb. When 

the gas is heated enough, it decomposes in atoms and ions and Chemical Thermodynamics is needed to 

analyse these reactions. These solid-liquid-gas phase transitions apply only to few-atom molecular 

substances and crystalline networks (metallic and ceramic), and only for quasi-static processes, but do not 

apply to many-atom molecular substances like ceramic or plastic macromolecules that yield amorphous 

solid phases, and do not show well-defined melting temperatures but glass-transition temperatures, where 

thermal expansion has a jump (in crystalline solids it is density that shows a jump). 

Phase diagrams for a pure substance 

Phase transformations can be represented in a p-T diagram (called phase diagram for a pure substance), as 

shown in Fig. 4.2 for the case of pure water at equilibrium (in a metastable state, distilled water at 100 

kPa may be kept as undercooled liquid well below 0 ºC, and as superheated liquid above 100 ºC). 

Although water is perhaps the simple substance showing more complex behaviour, all simple-fluids have 

nearly the same layout, particularly if only the region close to the liquid-vapour equilibrium is of interest, 

with a critical point CR, a triple point TR and the normal boiling point BP in between. 

 

 
Fig. 4.2. Phase diagram for H2O to scale. Notice how different they may look in linear scale, and in 

logarithmic scale for pressure. 

 

A first feature of p-T diagrams is a quasi-vertical line separating the solid and liquid phases, showing the 

fact that the melting point scarcely depends on pressure (except at huge pressures, of interest only in 

geology and astrophysics, up to now, where all substances tend to the solid state, usually a different 

allotrope of the normal solid, see Fig. 4.2b). Although the melting line is practically vertical in all cases, 

its inclination is usually exaggerated in sketches to show that most substances have a positive slope, but 

water and a few rare others have negative slopes, as later explained. 

 

A second feature is that the boiling temperature depends a lot on applied pressure and two limits appear in 

the vapour pressure curve, known as triple point (TR) and critical point (CR) respectively (Fig. 4.2). For 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c06/Phase%20change.pdf
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low enough pressures, the solid directly sublimates to gas without passing through the liquid phase, and 

for high enough pressures the liquid does not boil but expands and expands without phase change. 

Because a smooth process (without phase changes) can join a liquid state to a gas state, and vice versa, 

around the critical point, it is a matter of consensus to distinguish between a liquid state and a gas state; 

usually, a fluid state is named ‘liquid’ if it is below its critical pressure and to the left of the vapour-

pressure curve in Fig. 4.2; a fluid state is named ‘vapour’ if it is below its vapour-pressure curve and to 

the left of its critical temperature; a fluid state is named ‘gas’ if it is below its critical pressure and to the 

right of its critical temperature; finally, a fluid state is named ‘supercritical fluid’ if it is above its critical 

pressure (usually in the range p/pCR=1..2 and T/TCR=1.0..1.1). The term 'vapour pressure curve' usually 

refers to the liquid-vapour-equilibrium (LVE) vapour pressure, but sometimes the solid-vapour-

equilibrium curve is included. 

 

The liquid state is not abundant in the universe, with the remarkable exception of water on Earth, but 

there can be realised very-low-temperature liquids (cryogenic fluids, with quantum helium being the only 

substance remaining liquid as T→0 for p<2.5 MPa), and very-high-temperature liquids (liquid metals; at 

room pressure, hafnium is a liquid from 2500 K to 4900 K). 

 

Notice that the melting line cannot end in a critical solid-liquid point but splits at additional triple points 

(solid-solid-liquid), because there cannot be a smooth transition from a crystalline symmetry to the liquid 

randomness. Triple points of pure substances of low molar mass are fixed points, i.e. can only occur at a 

precise temperature and pressure, and they are key points in thermometry. The approximation of triple-

point data by the melting temperature and its corresponding vapour pressure is usually good enough for 

most purposes (e.g. the triple point of water is TTR273.16 K (by definition of the temperature unit) and 

pTR6111 Pa (by experimentation), whereas the melting point is 273.15 K and its corresponding vapour 

pressure using Antoine equation, to be explained in Chapter 6: Phase change, is pv(273.15 K)=620 Pa; a 

very good approximation. 

 

A final feature is that the axes (T=0, p=0) in the phase diagram are unattainable limits (nowadays some 

10-6 K and some 10-12 Pa have been reached, but 0 K would imply an infinite series of cooling steps and 0 

Pa would imply lack of any mass at sight). As this singular point is approached, the the slope of the 

sublimation curve tends to zero in the p-T diagram, and to infinity in a lnp-T diagram 

Other thermodynamic diagrams 

Thermodynamic diagrams are graphical plots of, either the substance properties (e.g. the p-h diagram for 

water), or some particular processes applied to the working substance (as used in most thermodynamic 

exercises, e.g. Ex. 2.3). 

 

Besides the p-T or phase diagram, several other diagrams are in current use to present pure-substance data 

or to sketch particular processes of a pure substance, as shown in Fig. 4.3. The p-v diagram is mainly used 

to sketch mechanical processes like cylinder-piston evolutions. The p-h diagram is most used to present 

data for substances, and in refrigeration problems. The T-s diagram is the most used in teaching and 

sketches of general process. The h-s diagram is the traditionally used in steam problems. Notice that the 

triple point in the p-T diagram becomes a triple line in the other diagrams, due to the coexistence of three 

http://imartinez.etsiae.upm.es/~isidoro/lab1/Thermometry/Thermometry.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_ph_H2O.jpg
http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_ph_H2O.jpg
http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Exercise%203.pdf
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phases with different properties, whereas the critical point remains a point because the two coexisting 

phases have the same properties. It must be noticed also that, to present a complete set of data for a 

substance, one needs one potential, or two equations of state, so that it is not enough to have the family of 

isochors (lines of constant volume) in a p-T diagram, neither the family of isotherms in the p-h diagram, 

nor the family of isobars in a T-s diagram; but the family of isentropics in a p-h diagram suffice, as well 

as the family of isobars in a h-s diagram, because the potential h(s,p) is made available in both cases. 

Exercise 6. The h-s or Mollier diagram  

 

 
Fig. 4.3. Main thermodynamic diagrams used to plot pure-substance data or to sketch particular 

processes. 

 

More accurate than the graphical presentation of data (although less handy) is a set of tables with 

numerical values, usually a double entry table for the gas phase and a single entry one for the saturated 

states. 

 

Notice that some facts on the behaviour of pure substances may be misleading when mixtures are 

considered. Some examples follow: One may believe that water cannot be solid or gas at room conditions; 

one says “at 15 ºC and 100 kPa, water is a liquid” when one should say “at 15 ºC and 100 kPa, pure water 

is a liquid”, but at the same conditions water is a gas when dissolved in air. One may believe that air 

cannot be in the liquid state at room conditions, in spite that all fish and aquatic plants breathe it (gases 

and solids dissolved in liquids are in the liquid state). One may believe that the critical point marks the 

maximum temperature for a liquid, without realising that the critical point for mixtures departs a lot from 

the critical points of pure substances. One may believe that the maximum density for a substance is when 

as a pure solid (or pure liquid in some exceptional cases like water or silicon), without ever thinking on 

the possibility that a mixture with another substance might enclose more molecules per unit volume than 

the pure condensed phase (e.g. one litre of metal hydride may hold more hydrogen than if filled with 

liquid hydrogen).  

Corresponding states model (analysis) 

As said before, graphical representations of simple pure-substance data, on the same diagram, have all the 

same topology (the one shown in Fig. 4.3), suggesting that if conveniently scaled with the triple, or better 

the critical point data (because this is the key point in the whole fluid phase, liquid and vapour), they 

might match. Of course real substances do not match perfectly when plotted in reduced variables, but the 

accuracy may be acceptable and the study worth enough (it would perfectly match if the molecular model 

had only two parameters, as in the Lennard-Jones model referred above, or for any other two-parameters 

model as VWM or RKM).  

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise6.pdf
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The most widely used corresponding states diagram (see above how they can be generated) comes back to 

Hougen and Watson in 1900, who chose an overlay fitting with ZCR=0.27 (see following point), and is 

sketched in Fig. 4.4 and plotted aside under Thermal data:  

 

 
Fig. 4.4. Sketch of the compressibility factor, Z, and the compressibility corrections hcc and scc , in 

terms of reduced pressure and temperature, TR≡T/TCR and pR≡p/pCR, for the corresponding 

states model (CSM). 

 

The value of the compressibility factor at the critical point, ZCR=pCRvCR/(RTCR) (not to be confused with 

the compressibility coefficient, , which tends to infinity at the critical point), most clearly shows the 

difference between reduced models and experiments. Experimental data show that ZCR(H2O)=0.23, 

ZCR(NH3, alcohols, ketones...)=0.24..0.26, ZCR(hydrocarbons)=0.26..0.28, and ZCR(permanent 

gases)=0.28..0.30, whereas for the analytical models ZCR(PGM, IGM)=1, ZCR(vWRM)=0.38, 

ZCR(RKRM)=0.32, and the choice of ZCR(CSM)=0.27. Instead of ZCR, other reduced parameters may be 

chosen to compare models with experiments; e.g. the reduced boiling temperature, TbR≡T/bTCR, the 

reduced Boyle’s temperature, TBR≡T/BTCR (see following point), the reduced inversion temperature, 

TIR≡T/ITCR, the acentric factor (see following point), or the complete vapour-pressure curve (in reduced 

variables); a simple approximation to the latter is Guggenheim's rule, lnpR=A(11/TR), with A6, as 

explained in Chapter 6: Phase change. For many substances, the reduced boiling-point temperature is 

TbR=0.6 (e.g. 0.58 for H2O, 0.59 for NH3, 0.64 for C4H10, 0.71 for CO2, 0.66 for CH3OH, 0.61 for N2, 

0.62 for C3H8). The reduced triple-point temperature, however, has large scatter: TTPR=0.42 for H2O 

(pTPR=0.0045), TTPR=0.71 for CO2 (pTPR=0.014), TTPR=0.48 for NH3 (pTPR=0.0088), TTPR=0.23 for C3H8 

(pTPR=0.023), etc. If critical-point data for a substance is not available, a crude approximation in terms of 

the normal boiling point is: TCR1.6Tb, CR0.37b, and pCR=ZCRCRRTCR.  

 

Enthalpy and entropy corrections to the ideal gas state are performed with the help of the auxiliary graphs 

h-pR and s-pR. Other functions are computed from enthalpy and entropy; e.g. u=h(pv). The 

explanation of how the enthalpy and entropy correction can be computed from the compressibility factor 

is very illustrative of how to use the data available in any model (CSM, VWM, RKM...). To begin with, 

only increments of energy and entropy were defined operationally (Eqs. 1.3 and 2.6); thus the problem is 

how to compute h and s from the given data v(T,p) and cp(T,p0). The general expressions to do that 

are (4.17) and (4.18), and the integration can be performed along any desirable path since h and s are state 

functions and thus path-independent. On view of the available data, it is advantageous to follow the three-

step path shown in Fig. 4.5 since this is the only one that only requires the values of cp at very low 

pressure, thus (4.17) and (4.18) develop to:  

http://imartinez.etsiae.upm.es/~isidoro/dat1/index.html
http://imartinez.etsiae.upm.es/~isidoro/bk3/c06/Phase%20change.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_HpR_CSM.jpg
http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_SpR_CSM.jpg


Thermodynamic potentials and properties 18 

 
Fig. 4.5. This is the best integrating path from 1 to 2, on view of the data at p0. 
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and in reduced variables, with v=ZRT/p from (4.15) and v=v/T|p from 4.16): 
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what may be viewed as an ideal gas contribution (that may be further approximated with the perfect gas 

model), plus some compressibility corrections in the way:: 
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where: 

 

 
2

1

( , 0)id
T p R

R
T

CR

c T ph
dT

RT R


 

Δ
,               2

0

R

R

R

cc
p

R
R

p
CR R R

p

dph Z
T

RT T p




 

Δ
 (4.42) 

 
2

2

1

1

( , 0)
ln

id
T Rp R

R
T

R R

pc T ps
dT

R RT p


 

Δ
,   

0
1

R

R

R

cc
p

R
R

p
R R

p

dps Z
Z T

R T p





 
   
 
 


Δ

 (4.43) 

Boyle’s temperature. Inversion temperature. Acentric factor 

Boyle's temperature, TB, is defined as the isotherm that goes out from p=0 with zero slope in the Z-pR 

diagram, i.e. it is the temperature at which real gas behaviour departs the least from the ideal gas model as 

pressure increases (the closest to the horizontal line Z=1 in the Z-pR diagram); some experimental values 

for Boyle temperature are: TB(N2)=327 K (TBRTB/TCR=2.60), TB(O2)=405 K (TBR=2.61), TB(Ar)=410 K 

(TBR=2.72), TB(CO2)=713 K (TBR=2.35), TB(H2)=110 K (TBR=3.3), TB(CH4)=510 K (TBR=2.67), to be 

compared with TBR(VWRM)=27/8=3.4, and TBR(CSM)=2.5. The fact that normal temperature on Earth 

(around 300 K) is close to air Boyle’s temperature (around 350 K) makes the ideal gas model applicable 

to air at relatively large pressure (which is not the case for most other gases). 
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The inversion temperature, TI, is the temperature separating the region of heating from the region of 

cooling, when adiabatically throttling a gas, and corresponds to JK=0 in (4.27); some experimental 

values for the inversion temperature are: TI(N2)=620 K (TIR=4.9), TI(O2)=765 K (TIR=4.9), TI(He)=45 K 

(TIR=8.5), TI(Ne)=270 K (TIR=6.1), TI(H2)=200 K (TIR=6.1), TI(CO2)=1250 K (TIR=4.1), TI(CH4)=1010 K 

(TIR=5.3), to be compared with TIR(VWRM)=27/4=6.8, and TIR(CSM)5. 

 

The acentric factor, , introduced by Pitzer in 1955 as a measure of the non-sphericity of a gas molecule. 

He realise that monoatomic gases (really all noble gases except helium) at TR=0.7 (a reduced temperature 

he chose for comparisons), have a reduced vapour pressure, pvR, close to pvR=0.1 (i.e. log10pvR=1). 

Besides, he realised that other gases departing the same amount from that reference point, have similar 

departures in other reduced variables. He then proposed to define the acentric factor as 

10 0.7
1 log

R
vR T

p


   , and use it as a third parameter in the enhanced corresponding state model 

described below. Values of Pitzer's acentric factors can be found aside, where it can be seen that neon, 

argon and xenon have 0. 

 

Furthermore, the acentric factor may be used to have a reduced vapour pressure curve, more accurate than 

Guggenheim's approximation, in the form lnpR=5.4(1+)(11/TR). 

Equations of state with three or more parameters 

The corresponding states method developed above (CSM) gives all the volumetric information of a fluid, 

v(T,p), in terms of only two parameters for each fluid, TCR and pCR. Several enhanced corresponding 

states methods have been developed, introducing additional parameters of the substance. The first choice 

might seem to be a three-parameter model based on TCR, pCR and vCR (or ZCR=pCRvCR/(RTCR), but the 

experimental measure of vCR has a large uncertainty (the position of a maximum), and it is preferable to 

use the tern TCR, pCR and  (the acentric factor, defined just above), basically because two sets of graphics 

(or tabulations) are enough, i.e. Z(pR,TR,)=Z0(pR,TR)+Z1(pR,TR) at least for ||<0.2, where Z0(pR,TR) is 

a similar graph to the Z(pR,TR)-graph used in the simple corresponding state model (CSM), which was 

prepared to best fit hydrocarbon gases with ZCR=0.27, but now fitting the noble-gas data (other than He, 

as said), which have ZCR=0.29 (and pvR|TR=0.7=0.1, whereas in our Z(pR,TR)-graph pvR|TR=0.7<0.1; 

pvR|TR=0.70.08).  

 

As a substitute of this three-parameters extended corresponding-states-method, one may use the following 

truncated virial expansion model in reduced variables, based on the term TCR, pCR and, that we name 

acentric virial model, AVM), and which gives accurate predictions for most real gases (except highly 

polar molecules like water) in the range 0.6<TR<2: 
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, and any cp(T,p0) function (4.44) 

 

Exercise 7. Corresponding states corrections 

Exercise 8. Corrections based on an analytical equation of state 

 

https://en.wikipedia.org/wiki/Acentric_factor
http://imartinez.etsiae.upm.es/~isidoro/dat1/eGAS.pdf
http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_ZpR_CSM.jpg
http://imartinez.etsiae.upm.es/~isidoro/dat1/Dia_ZpR_CSM.jpg
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise7.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Exercise8.pdf
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TYPE OF PROBLEMS 

The housekeeping problems of how thermodynamic variables are dependent on each other, constitutes the 

bulk of the problems in this Chapter that is the most formal and mathematical of all. The type of problems 

may be quite varied: 

1. Deduce one particular equation from others (many, according to the many equations presented).  

2. Find the redundancy in some thermodynamic data given. 

3. Deduce the shape of different curve families in the different diagrams.  

4. Extract indirect thermodynamic functions from usual diagrams. 

5. Compare the accuracy (and burden) of different thermodynamic models. 

6. Use the corresponding states model to quickly elucidate the goodness of more simple models. 

 

Back to Index 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/index.html

