EFFECT OF THERMAL EXPANSION ON A PENDULUM

Statement

Find the sensitivity of a pendulum-clock with temperature, assuming a stainless-steel rod that beats with a 2 s period at $20^{\circ} \mathrm{C}$, and find the discrepancy after a day at $30^{\circ} \mathrm{C}$
$=$ Determinar el efecto de la dilatación térmica sobre un reloj de péndulo, suponiendo que es de acero inoxidable, que tiene un periodo de $2 \mathrm{~s} \mathrm{a} 20^{\circ} \mathrm{C}$, y que está un día a $30^{\circ} \mathrm{C}$.

Solution.

From Mechanics, the period of a pendulum and the corresponding length are:

$$
T=2 \pi \sqrt{\frac{L}{g}} \quad \rightarrow \quad L=g\left(\frac{T}{2 \pi}\right)^{2}=9.8\left(\frac{2}{2 \pi}\right)^{2}=0.993 \mathrm{~m}
$$

With a typical thermal expansion for stainless-steel of $\alpha=14 \cdot 10^{-6} 1 / \mathrm{K}$ (Table ../eSol.htm), the elongation is $\Delta L=L \alpha \Delta T=0.14 \mathrm{~mm}$ and the sensitivity:

$$
\frac{\mathrm{d} \tau}{\tau}=\frac{1}{2} \frac{\mathrm{~d} L}{L}=\frac{\alpha \mathrm{d} T}{2} \rightarrow \frac{\Delta \tau}{\tau}=\frac{14 \cdot 10^{-6} \cdot 10}{2}=70 \cdot 10^{-6}
$$

that for 86400 s means a lag of $86300 \cdot 70 \cdot 10^{-6}=6 \mathrm{~s}$, i.e. the clock lags behind real time.

Comments.

Notice that the sensitivity, and thus the discrepancy, is independent of the rod length.

During the French Revolution, when a new standard of length was been discussed, it seems that Talleyrand defended the idea of using the length of a pendulum that beats seconds, instead of the finally adopted $1 / 10^{7}$ part of the meridian quadrant.

Back

