

SOUND SPEED IN AIR AND WATER

Statement

Deduce the sound speed in air and water, from the general equation $c = \sqrt{\partial p / \partial p}$

Deducir expresiones particulares para la velocidad del sonido en el aire y en el agua a partir de: $c = \sqrt{\partial p / \partial p}_s$

Solution.

For air, assuming a perfect gas, isentropic means $pv^{\gamma} = p\rho^{-\gamma} = \text{constant}$, and thus $\frac{dp}{p} - \gamma \frac{d\rho}{\rho} = 0$, and

consequently $c = \sqrt{\gamma \frac{p}{\rho}} = \sqrt{\gamma RT}$, with a typical value of $\sqrt{\gamma RT} = \sqrt{1.4 \cdot 287 \cdot 288} = 340$ m/s at 15 °C,

For water, isentropic is equivalent to isotherm as a first approximation (the perfect liquid approximation), and from $\kappa \equiv \frac{-1}{V} \frac{\partial V}{\partial p}\Big|_{T} = \frac{1}{\rho} \frac{\partial \rho}{\partial p}\Big|_{T}$ one deduces $c = \sqrt{\frac{1}{\rho\kappa}}$, with a typical value of $\sqrt{\frac{1}{\rho\kappa}} = \sqrt{\frac{1}{1000 \cdot (0.45 \cdot 10^{-9})}} = 1490$ m/s.

Comments. Notice that the sound speed in air grows with T but does nor change with p (within the perfect gas approximation), whereas for water, the speed of sound would be infinite with the incompressible model.

	Density	Thermal expansion	Compressibility	Sound speed	Thermal capacity
	ho [kg/m ³]	α [K ⁻¹]	κ [Pa ⁻¹]	<i>c</i> [m/s]	$c_p \left[J/(kg \cdot K) \right]$
Pure water at 0 °C	999.84	$-68 \cdot 10^{-6}$	0.5110 ⁻⁹	1402	4218
at 15 °C	999.10	$152 \cdot 10^{-6}$	0.4510-9	1509	4187
at 30 °C	995.65	303.10-6	0.4510-9	1509	4178
at 50 °C	992.22	$455 \cdot 10^{-6}$	0.4410^{-9}	1543	4181
at 70 °C	977.78	580·10 ⁻⁶	0.4510-9	1555	4189
at 100 °C	958.40	$750 \cdot 10^{-6}$	0.4910-9	1543	4216
Seawater at 0 °C	1028	53·10 ⁻⁶	0.46310-9	1449	3986
at 15 °C	1026	$212 \cdot 10^{-6}$	0.43010-9	1507	3990
at 30 °C	1023	334·10 ⁻⁶	0.41010-9	1546	4001
Seawater 0 °C, 100 MPa	1071	262.10-6	0.35410-9	1623	3769

More accurate values for water at 100 kPa are:

Ref.: http://fermi.jhuapl.edu/denscalc.html.

Notice that with this data you may compute $c_v=c_p-\alpha^2 T/(\kappa\rho)$; e.g. for pure water at 0 °C $c_p-c_v=2.5$ J/(kg·K).

Back