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PUSH AND RELEASE OF A PISTON 

 

Statement 

Inside a vertical cylinder of 0.01 m2 cross-section there is 0.01 kg of nitrogen closed by a 5 kg steel piston 

at the top. Consider the following process: 1) by a suitable force, the piston is gently moved so as to 

reduce the initial volume of the gas by 10%; 2) the applied force is suddenly removed. One wants to: 

a) Sketch of the evolution in a z-t (height-time) diagram. 

b) Determine the thickness of the piston and its initial height. 

c) State of the system at each point and a p-V (pressure-volume) process diagram. 

d) Energy change between states, and heat and work transferred through the frontier. 

e) T-s (temperature-entropy) process diagram. 

f) Entropy change and entropy generation for every system between consecutive states, and along the 

whole process. 

Dentro de un cilindro vertical de 0,01 m2 de sección hay 0,01 kg de nitrógeno encerrado con un émbolo 

superior de 5 kg de acero. Considérese la siguiente evolución: 1) mediante las fuerzas apropiadas se 

obliga al pistón a reducir lentamente en un 10% el volumen ocupado por el gas, y 2) se libera el anclaje y 

se permite el libre movimiento del émbolo. Se pide: 

a) Esquema de la evolución en un diagrama altura-tiempo. 

b) Determinar el espesor del émbolo y su altura inicial. 

c) Valores p-V-T en los estados de equilibrio considerados. 

d) Variación de energía entre los estados antedichos y para todo el ciclo, así como calor y trabajo 

transferidos entre los sistemas involucrados. 

e) Diagrama T-s de la evolución. 

f) Variación de entropía y generación de entropía para todos los sistemas entre los estados antedichos 

y para todo el ciclo. 

 

Solution 

a) Sketch of the evolution in a z-t (height-time) diagram. 

Most problems are not as simple as the previous exercises, and the solution is not immediate but requires 

some development, mixing appropriately comments on notation and assumptions, analytical deductions 

(formulation) and numerical computations. To better grasp the problem by the person solving it, and to 

better transmit the information to the persons using it, it is important to start by a sketch of the system and 

its evolution, introducing also the nomenclature used, as here in Fig. 1. 

 

 
Fig. 1. Time evolution of the piston: 1) initial state, 2) 10% compression, 3) maximum 

expansion, 4) mechanical equilibrium, 5) thermal equilibrium.  
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First the initial conditions are studied. From the problem statement we should understand that the piston 

is initially in mechanical equilibrium so that the pressure in the gas is p1=p0+mPg/A, where p0 is the 

ambient atmospheric pressure (assumed as 100 kPa as reasoned in the Introduction), mP is the mass of the 

piston, g the gravitational acceleration (assumed as 9.8 m/s2 as reasoned in the Introduction) and A the 

cross-section area A=D2/4. In absence of more details, we also take T0=288 K (15 ºC) as reasoned in the 

Introduction. 

 

b) Determine the thickness of the piston and its initial height. 

The density of steel is assumed available: =7900 kg/m3 (from Thermal data), so the thickness is 

LP=mP/(PA)=0.064 m. 

We obtained the height of the piston from the ideal gas equation of state pAz=mRT with with T1=288 K 

and p1=p0+mPg/A=105 kPa, what yields z1=mRT/(p1A)=0.815 m. 

 

c) State of the system at each point and a p-V (pressure-volume) process diagram. 

From 1 to 2 a slow compression takes place, thence enough time for heat transfer may be assumed and the 

process approximated as isothermal, so that pV=constant, and with z2=(V2/V1)z1, z2=0.9∙0.815=0.734 m, 

yields p2=p1(V1/V2)=117 kPa with T2=288 K. 

 

The evolution after release of the piston in state 2 is rather complicated, but the final state of 

thermodynamic equilibrium (state 5 in Fig. 1) is trivial because temperature and pressure are recovered 

from the initial state, so that  p5=105 kPa, z5=0.815 m, with T5=288 K. 

 

Point 3, the maximum expansion, is obtained assuming that there is no time for heat transfer, and that the 

friction force Ff between piston and cylinder is small. Upon integration of the momentum equation for the 

piston: 
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from state 2 to 3, both with zero speed, neglecting Ff, and with pz=constant, one gets: 
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This is one equation with one unknown z3 that must be numerically or graphically evaluated since it is not 

explicitly solved algebraically because of the power . To do it by hand, once the known values 

substituted: 
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it is better to start by the expected solution; if it were a linear oscillation around z1=0.815 m from 

z2=0.734 m, it would reach z5=0.815+(0.8150.734)=0.896 m, so this is a good start, but we get for the 

right-hand-side of (3) a value of 6 (the unit is J), instead of 0; trying now with a close value e.g. 0.85 we 
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get 0.2 instead of 0, and interpolating linearly, the zero would correspond to z3=0.851 m. More accurately 

result is z3=0.852 m; from pV=constant one gets p3=95 kPa, and from the equation of state T3=271 K. 

Just to help visualise the problem, Fig. 2 presents the function to be cancelled: 

f(z)=29101891/z0.41049z. 

 

 
Fig. 2. Plot of the function to be cancelled in (3), i.e. f(z)= 29101891/z0.41049z. The 

trivial solution is z=z2=0.734 m, as in (2), and the one looked for is z=z3=0.852 m. 

 

Point 4 corresponds to the mechanical equilibrium, which is quickly reached even for small-friction 

systems, far quicker than the thermal equilibrium when gases are participating, that takes a very long 

time. Because of mechanical equilibrium of the piston, p4=p0+mPg/A=105 kPa, and, assuming that heat 

transfer is still under-developed, pV=constant, because there is not friction inside the system (gas); 

thence z4=z2(p2/p4)= 0.734(117/105)1.4=0.791 m and T4=279 K. 

 

Point 5 coincides with the initial state, as said before. The p-V-T values (really z-T-p values) are 

summarised in Table 1, and the evolution in the p-V diagram shown in Fig. 3. 

 

Table 1. Values of state variables at key points in the evolution of the gas. 

state z [m] T [K] p [kPa] 

1 0.815 288 105 

2 0.734 288 117 

3 0.852 271 95 

4 0.791 279 105 

5 0.815 288 105 

 

 
Fig. 3. Evolution in the p-V diagram. From 1 to 2 isothermal, from 2 to 3 adiabatic 

oscillations dumped until mechanical equilibrium at point 4, from 4 to 5 isobaric 

tempering. 

 

d) Energy change between states, and heat and work transferred through the frontier. 

The energy change between two states for the trapped gas is U=mcvT where the thermal capacity at 

constant volume for the gas, cv, is assumed to be known, usually through the Mayer relation cp-cv=R and 
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tabulated cp values (see Thermal data): cv=cp-R=1040-297=743 J/(kg∙K). The work received by the system 

(the trapped gas) is computed by W=∫pdV, once the function p=p(V) is determined by the actual process. 

The heat received by the system is computed with Q=EW. The results obtained are summarised in 

Table 2 and analysed below.  

 

Table 2. Energy change, and work and heat received in the gas system. 

process E [J] W [J] Q [J] 

1-2 0 90.1 -90.1 

2-4 -63.4 -63.4 0 

4-5 63.4 -25.3 88.7 

1-5 0 1.4 -1.4 

 

Obviously E=W+Q. Also, because of the cyclic process, E15=0, but W150 and consequently Q150. 

Since the work done is the area between the p=p(V) path and the abscissas, the work in the cycle is the 

area enclosed by the closed path (the little triangle-wise 1-2-4-5 in Fig. 3), that is positive (received by the 

system) if the cycle is run anti-clockwise, as in this exercise, and negative in the contrary. It will be 

shown in Chap. 3 that this cycle represents a refrigeration machine, capable of extracting heat (process 4 

to 5) from a system below ambient temperature, at the expense of some external work. It is also 

interesting to note that in the process 1-2, from the 90.1 J received by the gas, only 4.6 J were actually 

consumed by the external force pushing the piston; the rest were supplied by the decreasing potential 

energy of the piston, mEgz=4.0 J, and primarily by the ambient atmosphere, p0V=81.5 J. From this 4.6 

J directly applied, 1.4 J are used for the refrigeration effect (Table 2) and the other 3.2 J dissipated in the 

friction between piston and cylinder. 

 

e) T-s (temperature-entropy) process diagram. 

The generic entropy change between two states for the trapped gas is S2-S1=m(cpln(T2/T1)-Rln(p2/p1)). The 

numerical values are computed below, but the sketch is easy: an isothermal entropy decrease (heat 

flowing out), isentropic oscillations, and a final isobaric tempering to re-gain initial conditions. 

 

 
Fig. 4. Evolution in the T-S diagram. Note that the origin of S is arbitrary (here, S0=0.5 J/K is taken, to 

centre the process path). 

 

http://imartinez.etsin.upm.es/dat1/default.htm
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f) Entropy change and entropy generation for every system between consecutive states, and along the 

whole process. 

The generic entropy change between two states for the system, S, has been quoted above, and for the 

atmosphere it is Senv=Q0/T0 (with Sgen,env=0 because it is assumed to be a reversible heat source). But 

there is a singularity with this modelling; as explained in Exercise 2: we must add a third thermodynamic 

system, the frontier, to account for all physical processes, since, with the uniform-temperature model for 

the system and the environment, entropy is generated at the frontier. To skip that singularity, we follow 

here the trick of extending the environment a little inside the system, to include that dissipation; thence 

Senv=Q0/T with Sgen,env>0. The generation of entropy in the universe is now Sgen=S+Senv. The results 

are presented in Table 3. 

 

From 1 to 2, S12=m(cpln(T2/T1)-Rln(p2/p1))=0.01(1040ln(288/288)-297ln(117/105))=0.313 J/K. For 

the environment receives Senv=Q0/T0=90.1/288=0.313 J/K. 

 

From 2 to 4, gas evolution has been assumed isentropic, S=0, but the entropy of the environment has 

increased due to friction dissipation. Although there is no time from 2 to 4 for the heated pieces in friction 

(piston and cylinder walls) to evacuate the energy to the atmosphere (and not to the gas inside), let us 

assume the model is appropriate, and compute Senv= Q0/T0=W24/T0=63.4/288=0.222 J/K. 

 

From 4 to 5, S45=m(cpln(T5/T4)-Rln(p5/p4))=0.01(1040ln(288/279)-297ln(105/105))= 0.313 J/K. For the 

environment receives Senv=Q0/T0=88.7/288=0.308 J/K. 

 

Table 3. Entropy change for the system (trapped gas) and for the environment (including the 

frontier), and global entropy generation. 

 Gas Environment Universe 

process S 

 [J/K] 

∫dQ/T 

 [J/K] 

Sgen 

 [J/K] 

S 

 [J/K] 

∫dQ/T  

[J/K] 

Sgen  

[J/K] 

S 

 [J/K] 

∫dQ/T 

 [J/K] 

Sgen  

[J/K] 

1-2 -0.313 -0.313 0 0.313 0.313 0 0 0 0 

2-3-4 0 0 0 0.222 0 0.222 0.222 0 0.222 

4-5 0.313 0.313 0 -0.308 -0.313 0.005 0.005 0 0.005 

1-2-3-4-5 0 0 0 0.227 0 0.227 0.227 0 0.227 

 

Notice that entropy generation is always positive, both at a single step and for the whole process, whereas 

entropy changes of a non-isolated system may be positive or negative. 

 

Back 
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