> restart:#"m13_p38"

Find the steady temperature at 1 AU, for an isothermal blackbody with the following geometries: planar one-side surface (i.e. rear insulated), plate, cylinder, sphere, and cubic box in its three symmetric orientations

Datos:

> read`../therm_eq.m`:read`../therm_const.m`:read`../therm_proc.m`:with(therm_proc):

> dat:=[E=1370*W_/m_^2];

[E = `+`(`/`(`*`(1370, `*`(W_)), `*`(`^`(m_, 2))))]

Image

> dat:=op(dat),Const,SI2,SI1:

a) Find the steady temperature at 1 AU, for an isothermal blackbody with the following geometries:

Energy balance, and steady state temperature for a blackbody:

> eqEB:=alpha*Afrontal*E=epsilon*Aext*sigma*Tst^4;Tst:=(Afrontal*E/(Aext*sigma))^(1/4);

`*`(alpha, `*`(Afrontal, `*`(E))) = `*`(epsilon, `*`(Aext, `*`(sigma, `*`(`^`(Tst, 4)))))
`*`(`^`(`/`(`*`(Afrontal, `*`(E)), `*`(Aext, `*`(sigma))), `/`(1, 4)))

Planar one side.

For one-side planar surface of area A with its normal tilted an angle beta to Sun rays, frontal area Af=Acos, and emitting area Ae=A, thence

> Afrontal:=A*cos(beta);Aext:=A;Tst_:=Tst;Tst0_:=evalf(subs(beta=0,dat,SI0,%))*K_;'Tst0_'=TKC(%);

`*`(A, `*`(cos(beta)))
A
`*`(`^`(`/`(`*`(cos(beta), `*`(E)), `*`(sigma)), `/`(1, 4)))
`+`(`*`(394.26150651799933536, `*`(K_)))
Tst0_ = `+`(`*`(121.11150651799933536, `*`(`C`)))

Planar two sides.

For a plate emitting from both sides,

> Afrontal:=A*cos(beta);Aext:=2*A;Tst_:=Tst;Tst0_:=evalf(subs(beta=0,dat,SI0,%))*K_;'Tst0_'=TKC(%);

`*`(A, `*`(cos(beta)))
`+`(`*`(2, `*`(A)))
`+`(`*`(`/`(1, 2), `*`(`^`(2, `/`(3, 4)), `*`(`^`(`/`(`*`(cos(beta), `*`(E)), `*`(sigma)), `/`(1, 4))))))
`+`(`*`(331.53308750351465205, `*`(K_)))
Tst0_ = `+`(`*`(58.38308750351465205, `*`(`C`)))

Cylinder.

For a cylinder of diameter D and length L with its axis tilted an angle beta to Sun rays, with all its surfaces emitting.

> Afrontal:=(Pi*D^2/4)*cos(beta)+Pi*D*L*sin(beta)/2;Aext:=2*(Pi*D^2/4)+Pi*D*L;Tst_:=Tst;Tst0_DL:=evalf(subs(beta=0,L=D,dat,SI0,%))*K_;'Tst0_'=TKC(%);Tst90_DL:=evalf(subs(beta=Pi/2,L=D,dat,SI0,Tst_))*K_;'Tst90_'=TKC(%);

`+`(`*`(`/`(1, 4), `*`(Pi, `*`(`^`(D, 2), `*`(cos(beta))))), `*`(`/`(1, 2), `*`(Pi, `*`(D, `*`(L, `*`(sin(beta)))))))
`+`(`*`(`/`(1, 2), `*`(Pi, `*`(`^`(D, 2)))), `*`(Pi, `*`(D, `*`(L))))
`*`(`^`(`/`(`*`(`+`(`*`(`/`(1, 4), `*`(Pi, `*`(`^`(D, 2), `*`(cos(beta))))), `*`(`/`(1, 2), `*`(Pi, `*`(D, `*`(L, `*`(sin(beta))))))), `*`(E)), `*`(`+`(`*`(`/`(1, 2), `*`(Pi, `*`(`^`(D, 2)))), `*`(Pi,...
`+`(`*`(251.91067085942248457, `*`(K_)))
Tst0_ = `+`(`-`(`*`(21.23932914057751543, `*`(`C`))))
`+`(`*`(299.57396213113384918, `*`(K_)))
Tst90_ = `+`(`*`(26.42396213113384918, `*`(`C`)))

Sphere.

> Afrontal:=Pi*D^2/4;Aext:=Pi*D^2;Tst_:=Tst;Tst0_:=evalf(subs(beta=0,dat,SI0,%))*K_;'Tst0_'=TKC(%);

`+`(`*`(`/`(1, 4), `*`(Pi, `*`(`^`(D, 2)))))
`*`(Pi, `*`(`^`(D, 2)))
`+`(`*`(`/`(1, 4), `*`(`^`(4, `/`(3, 4)), `*`(`^`(`/`(`*`(E), `*`(sigma)), `/`(1, 4))))))
`+`(`*`(278.78498481970153661, `*`(K_)))
Tst0_ = `+`(`*`(5.63498481970153661, `*`(`C`)))

Cube. Frontal.

For a frontal cube, i.e. an hexahedron of face area A, with all its surfaces emitting, Af=A and Ae=6A, thence:

> Afrontal:=A;Aext:=6*A;Tst_:=Tst;Tst0_:=evalf(subs(beta=0,dat,SI0,%))*K_;'Tst0_'=TKC(%);

A
`+`(`*`(6, `*`(A)))
`+`(`*`(`/`(1, 6), `*`(`^`(6, `/`(3, 4)), `*`(`^`(`/`(`*`(E), `*`(sigma)), `/`(1, 4))))))
`+`(`*`(251.91067085942248456, `*`(K_)))
Tst0_ = `+`(`-`(`*`(21.23932914057751544, `*`(`C`))))

Cube at 45º.

For a cube tilted 45º, i.e. an hexahedron with two opposite edges and the Sun in the same plane, Af=sqrt(2)*A, and Ae=6A, thence:

> Afrontal:=A*sqrt(2);Aext:=6*A;Tst_:=Tst;Tst0_:=evalf(subs(beta=0,dat,SI0,%))*K_;'Tst0_'=TKC(%);

`*`(A, `*`(`^`(2, `/`(1, 2))))
`+`(`*`(6, `*`(A)))
`+`(`*`(`/`(1, 6), `*`(`^`(6, `/`(3, 4)), `*`(`^`(`/`(`*`(`^`(2, `/`(1, 2)), `*`(E)), `*`(sigma)), `/`(1, 4))))))
`+`(`*`(274.71053451309280769, `*`(K_)))
Tst0_ = `+`(`*`(1.56053451309280769, `*`(`C`)))

Cube point-to-point.

For a cube pointing to the Sun, i.e. an hexahedron with two opposite vertices and the Sun in the same straight line (3 lit faces tilted 54.7º, instead of 2 lit faces tilted 45º in the previous case),Af=sqrt(3)*A  and Ae=6A, thence:

> Afrontal:=A*sqrt(3);Aext:=6*A;Tst_:=Tst;Tst0_:=evalf(subs(beta=0,dat,SI0,%))*K_;'Tst0_'=TKC(%);

`*`(A, `*`(`^`(3, `/`(1, 2))))
`+`(`*`(6, `*`(A)))
`+`(`*`(`/`(1, 6), `*`(`^`(6, `/`(3, 4)), `*`(`^`(`/`(`*`(`^`(3, `/`(1, 2)), `*`(E)), `*`(sigma)), `/`(1, 4))))))
`+`(`*`(288.99259936044381884, `*`(K_)))
Tst0_ = `+`(`*`(15.84259936044381884, `*`(`C`)))

Notice that only fully-convex surfaces have been considered; otherwise, view factors enter into play. For instance, consider a hemispherical shell with its symmetry axis aligned with the Sun.

Afrontal:=Pi*D^2/4;Aext:=Pi*D^2;eqEB:=alpha*Afrontal*E=epsilon*(F[1,ext]*A[1,ext]+F[1,int]*A[1,int])*sigma*Tst^4;F[1,ext]:=1;F[1,int]:=1/2;A[1,ext]:=Pi*D^2/2;A[1,int]:=Pi*D^2/2;Tst:=(Afrontal*E/((F[1,ext]*A[1,ext]+F[1,int]*A[1,int])*sigma))^(1/4);Tst_:=evalf(subs(dat,SI0,%))*K_;'Tst_'=TKC(%);

`+`(`*`(`/`(1, 4), `*`(Pi, `*`(`^`(D, 2)))))
`*`(Pi, `*`(`^`(D, 2)))
`+`(`*`(`/`(1, 4), `*`(alpha, `*`(Pi, `*`(`^`(D, 2), `*`(E)))))) = `+`(`*`(`/`(1, 4), `*`(epsilon, `*`(`+`(`*`(F[1, ext], `*`(A[1, ext])), `*`(F[1, int], `*`(A[1, int]))), `*`(E)))))
1
`/`(1, 2)
`+`(`*`(`/`(1, 2), `*`(Pi, `*`(`^`(D, 2)))))
`+`(`*`(`/`(1, 2), `*`(Pi, `*`(`^`(D, 2)))))
`+`(`*`(`/`(1, 3), `*`(`^`(3, `/`(3, 4)), `*`(`^`(`/`(`*`(E), `*`(sigma)), `/`(1, 4))))))
`+`(`*`(299.57396213113384918, `*`(K_)))
Tst_ = `+`(`*`(26.42396213113384918, `*`(`C`)))

Notice that a hollow hemisphere gets warmer than a spherical shell, having the same frontal area and exposed area, at 26 ºC instead of at 6 ºC, because the concave part re-radiates to itself.

>