> restart;#"m11_p28"

En contacto con dos bloques metálicos separados 50 cm y a temperatura ambiente de 300 K hay una varilla de aluminio de 5 mm de diámetro en cuyo interior se disipa uniformemente una potencia de 2 MW/m3, estando en régimen estacionario en presencia de una corriente de aire con la que se supone que existe un coeficiente global de convección h. Se pide:

a) Balance energético de un elemento genérico (lineal) de varilla.

b) Perfil de temperatura a lo largo de la varilla, indicando los valores extremos, suponiendo h=0.

c) Variación de entropía con el tiempo y generación de entropía para cada sistema.

d) Perfil de temperatura a lo largo de la varilla, indicando los valores extremos, suponiendo h=50   W×m-2×K-1.

Datos:

> read`../therm_eq.m`:read`../therm_const.m`:read`../therm_proc.m`:with(therm_proc):

> su1:="Aluminio_anodizado":dat:=[T0=300*K_,D=5e-3*m_,L=0.5*m_,phi=2e6*W_/m_^3,h=50*W_/(m_^2*K_)]:dat:=[op(dat),A=evalf(subs(dat,Pi*D^2/4))];

[T0 = `+`(`*`(300, `*`(K_))), D = `+`(`*`(0.5e-2, `*`(m_))), L = `+`(`*`(.5, `*`(m_))), phi = `+`(`/`(`*`(0.2e7, `*`(W_)), `*`(`^`(m_, 3)))), h = `+`(`/`(`*`(50, `*`(W_)), `*`(`^`(m_, 2), `*`(K_)))), ...

Image

> sdat:=get_sol_data(su1):dat:=op(dat),sdat,Const,SI2,SI1:

a) Balance energético de un elemento genérico (lineal) de varilla.

> deq1:=A*(k*diff(T(x),x,x)+phi)=Pi*D*h*(T(x)-T0);deq1:=expand(deq1/(k*A));deq1:=subs(h=A*k*m^2/(Pi*D),deq1);

`*`(A, `*`(`+`(`*`(k, `*`(diff(diff(T(x), x), x))), phi))) = `*`(Pi, `*`(D, `*`(h, `*`(`+`(T(x), `-`(T0))))))
`+`(diff(diff(T(x), x), x), `/`(`*`(phi), `*`(k))) = `+`(`/`(`*`(Pi, `*`(D, `*`(h, `*`(T(x))))), `*`(k, `*`(A))), `-`(`/`(`*`(Pi, `*`(D, `*`(h, `*`(T0)))), `*`(k, `*`(A)))))
`+`(diff(diff(T(x), x), x), `/`(`*`(phi), `*`(k))) = `+`(`*`(`^`(m, 2), `*`(T(x))), `-`(`*`(`^`(m, 2), `*`(T0))))

b) Perfil de temperatura a lo largo de la varilla, indicando los valores extremos, suponiendo h=0.

> dsol1:=dsolve({subs(m=0,deq1),T(0)=T0,T(L)=T0},T(x));assign(%):T_:=evalf(subs(dat,T(x)));Tmax_:=subs(x=L/2,dat,T_);

T(x) = `+`(`-`(`/`(`*`(`/`(1, 2), `*`(phi, `*`(`^`(x, 2)))), `*`(k))), `/`(`*`(`/`(1, 2), `*`(phi, `*`(L, `*`(x)))), `*`(k)), T0)
`+`(`-`(`/`(`*`(4878., `*`(K_, `*`(`^`(x, 2)))), `*`(`^`(m_, 2)))), `/`(`*`(2439., `*`(K_, `*`(x))), `*`(m_)), `*`(300., `*`(K_)))
`+`(`*`(605.0, `*`(K_)))

i.e. el perfil será convexo, con un máximo centrado de 604 K.

c) Variación de entropía con el tiempo y generación de entropía para cada sistema.

> dSdt:=Q/T;dSdtbloque1:=Q1/T1;Q1:=(1/2)*phi*A*L;Q1_:=subs(dat,Q1);T1:=T0;'dSdtbloque1'=evalf(subs(dat,dSdtbloque1));dSdtbloque2:=Q2/T2;dSdtbloque2:=evalf(subs(dat,dSdtbloque1));dSdtamb:=0;dSdtvarilla:=0;dSdtuniv:=subs(dat,dSdtbloque1+dSdtbloque2+dSdtamb+dSdtvarilla);Sgen:='dSdt-Q/T';Sgen_bloque1:=0;Sgen_bloque2:=0;Sgen_amb:=0;Sgen_varilla:=subs(dat,2*Q1_/T0);Sgen_univ:=Sgen_bloque1+Sgen_bloque2+Sgen_amb+Sgen_varilla;

`/`(`*`(Q), `*`(T))
`/`(`*`(Q1), `*`(T1))
`+`(`*`(`/`(1, 2), `*`(phi, `*`(A, `*`(L)))))
`+`(`*`(9.820, `*`(W_)))
T0
dSdtbloque1 = `+`(`/`(`*`(0.3274e-1, `*`(W_)), `*`(K_)))
`/`(`*`(Q2), `*`(T2))
`+`(`/`(`*`(0.3274e-1, `*`(W_)), `*`(K_)))
0
0
`+`(`/`(`*`(0.6548e-1, `*`(W_)), `*`(K_)))
`+`(dSdt, `-`(`/`(`*`(Q), `*`(T))))
0
0
0
`+`(`/`(`*`(0.6547e-1, `*`(W_)), `*`(K_)))
`+`(`/`(`*`(0.6547e-1, `*`(W_)), `*`(K_)))

d) Perfil de temperatura a lo largo de la varilla, indicando los valores extremos, suponiendo h=50   W×m-2×K-1.

> T(x):='T(x)':dsol2:=dsolve(deq1):sol3:=solve({dsol1,subs(T(x)=T0,x=0,dsol1),subs(T(x)=T0,x=L,dsol1)},{_C1,_C2,T(x)}):T(x):=subs(sol3,T(x));T__:=simplify(evalf(subs(m=sqrt(Pi*D*h/(k*A)),dat,T(x))));Tmax_:=evalf(subs(x=L/2,dat,T__));plot(subs(SI0,{T_,T__}),x=0..subs(dat,L/m_),'T'=0..700,color=black);

`+`(`/`(`*`(`/`(1, 2), `*`(`+`(`-`(`*`(phi, `*`(`^`(x, 2)))), `*`(phi, `*`(L, `*`(x))), `*`(2, `*`(T0, `*`(k)))))), `*`(k)))
`+`(`/`(`*`(2.439, `*`(`+`(`-`(`*`(2000., `*`(`^`(x, 2)))), `*`(1000., `*`(x, `*`(m_))), `*`(123., `*`(`^`(m_, 2)))), `*`(K_))), `*`(`^`(m_, 2))))
`+`(`*`(604.9, `*`(K_)))
Plot_2d

i.e. el perfil es convexo con un máximo centrado de 604 K.

>