> restart:#"m11_p21"

En un cable transportador de energía eléctrica se disipa 1 W/m. El cable tiene 1 mm de diámetro y está aislado con 4,5 mm de espesor de aislante de conductividad 0,1 W/(m.K). Si el coeficiente de convección exterior es 10 W/(m2.K), calcular el perfil de temperaturas.

Datos:

> read`../therm_eq.m`:read`../therm_const.m`:read`../therm_proc.m`:with(therm_proc):

> dat:=[Phi=1*W_/m_,R[1]=0.0005*m_,DR=0.0045*m_,k=0.1*W_/(m_*K_),h=10*W_/(m_^2*K_)];

[Phi = `/`(`*`(W_), `*`(m_)), R[1] = `+`(`*`(0.5e-3, `*`(m_))), DR = `+`(`*`(0.45e-2, `*`(m_))), k = `+`(`/`(`*`(.1, `*`(W_)), `*`(m_, `*`(K_)))), h = `+`(`/`(`*`(10, `*`(W_)), `*`(`^`(m_, 2), `*`(K_)...

Image

> dat:=op(dat),Const,SI1,SI2:

a) Calcular el perfil de temperaturas.

> eq11_9_2;eq11_9_1;eq1:=Q=Phi*L;eq2:=phi=Q/(Pi*R[1]^2*L);eq1_:=evalf(subs(dat,dat,dat,eq1));;eq2_:=evalf(subs(eq1_,dat,dat,eq2));eq3:=Q=k*2*Pi*L*(T[1]-T[2])/ln(R[2]/R[1]);eq4:=Q=h*2*Pi*R[2]*L*(T[2]-T0);sol1:=solve({eq3,eq4},{T[1],T[2]});sol1_:=expand(evalf(subs(eq1_,R[2]=R[1]+DR,dat,Const,sol1)));

Q = `*`(phi, `*`(Pi, `*`(`^`(R, 2), `*`(L))))
T(r) = `+`(T[1], `/`(`*`(`/`(1, 4), `*`(phi, `*`(`^`(R, 2), `*`(`+`(1, `-`(`/`(`*`(`^`(r, 2)), `*`(`^`(R, 2))))))))), `*`(k)))
Q = `*`(Phi, `*`(L))
phi = `/`(`*`(Q), `*`(Pi, `*`(`^`(R[1], 2), `*`(L))))
Q = `/`(`*`(kg_, `*`(m_, `*`(L))), `*`(`^`(s_, 3)))
phi = `+`(`/`(`*`(0.1273e7, `*`(kg_)), `*`(m_, `*`(`^`(s_, 3)))))
Q = `+`(`/`(`*`(2, `*`(k, `*`(Pi, `*`(L, `*`(`+`(T[1], `-`(T[2]))))))), `*`(ln(`/`(`*`(R[2]), `*`(R[1]))))))
Q = `+`(`*`(2, `*`(h, `*`(Pi, `*`(R[2], `*`(L, `*`(`+`(T[2], `-`(T0)))))))))
{T[1] = `+`(`/`(`*`(`/`(1, 2), `*`(`+`(`*`(Q, `*`(ln(`/`(`*`(R[2]), `*`(R[1]))), `*`(h, `*`(R[2])))), `*`(k, `*`(Q)), `*`(2, `*`(k, `*`(h, `*`(Pi, `*`(R[2], `*`(L, `*`(T0)))))))))), `*`(k, `*`(Pi, `*`...
{T[1] = `+`(`*`(294.8, `*`(K_))), T[2] = `+`(`*`(291.2, `*`(K_)))}

La representación gráfica es:

> deq1:=(1/r)*diff(T(r),r)+diff(T(r),r,r)=0;dsol1:=dsolve({deq1,T(R[1])=T[1],T(R[2])=T[2]},T(r));dsol1_:=evalf(subs(sol1_,R[2]=R[1]+DR,dat,SI0,dsol1));T01:=evalf(subs(k=1e2,eq2_,sol1_,R=subs(dat,R[1]),SI0,rhs(eq11_9_1)));T12:=rhs(dsol1_);T23inf:=subs(Const,SI0,T0);T23:=subs(sol1_,dat,Const,SI0,T0+(T[2]-T0)*exp(-1e3*(r-R[1]-DR)));plot({[r,T01,r=0..0.0005],[r,T12,r=0.0005..0.005],[r,T23,r=0.005..0.01],T23inf,subs(dat,SI0,[[R[1],0],[R[1],1000]]),subs(dat,SI0,[[R[1]+DR,0],[R[1]+DR,1000]])},r=0..0.01,280..300,color=black);

`+`(`/`(`*`(diff(T(r), r)), `*`(r)), diff(diff(T(r), r), r)) = 0
T(r) = `+`(`-`(`/`(`*`(`+`(`*`(T[2], `*`(ln(R[1]))), `-`(`*`(ln(R[2]), `*`(T[1]))))), `*`(`+`(ln(R[2]), `-`(ln(R[1])))))), `/`(`*`(`+`(`-`(T[1]), T[2]), `*`(ln(r))), `*`(`+`(ln(R[2]), `-`(ln(R[1])))))...
T(r) = `+`(282.7, `-`(`*`(1.563, `*`(ln(r)))))
`+`(294.8, `-`(`*`(3182., `*`(`^`(r, 2)))))
`+`(282.7, `-`(`*`(1.563, `*`(ln(r)))))
288
`+`(288, `*`(3.2, `*`(exp(`+`(`-`(`*`(0.1e4, `*`(r))), 5.0)))))
Plot_2d

>