

PROPERTIES OF GASES

(Function values at $100\ kPa$ and $288\ K$ or the normal boiling temperature if greater.)

				~	~	Critical	Pitzer's			ъ .
			_		Critical			Thermal	Thermal	Dynamic
Substance	Formula	mass	temp.	temp	pressure	compressibility factor ^a	factor	capacity	conductivity ^c	viscosity ^d
		M	T_b	T_{cr}	p_{cr}	Tactor	iactor	\mathcal{C}_p	k	μ · 10^6
		kg/mol	K	K	MPa	Z_{cr}	ω	$J/(kg \cdot K)$	$W/(m \cdot K)$	Pa·s
Acetone	C ₃ H ₆ O	0.058	329.2	508	4.70	0.233	0.309	1300		
Acetylene	C_2H_2	0.026	189.5 ^f	309	6.20	0.271	0.184	1580	0.019	9.3
Air	79%N ₂ + 21%O ₂	0.029	82e	132 ^g	3.75 ^g	$0.28^{\rm g}$	0.035	1004	0.024	18.1
Ammonia	NH ₃	0.017	239.8	406	11.30	0.242	0.250	2200	0.022	9.3
Argon	Ar	0.040	87.4	151	4.86	0.291	0	523	0.018	21.0
Benzene	C_6H_6	0.078	353.3	563	4.92	0.271	0.212	1300	0.007	7.0
1,3-Butadiene	C_4H_6	0.054	268.5	425	4.33	0.270	0.193	1510		
n-Butane	C_4H_{10}	0.058	272.6	425	3.80	0.274	0.193	1580	0.015	7.0
iso-Butane	C ₄ H ₁₀	0.058	261.5	408	3.64	0.280	0.176	1580	0.015	9.0
Carbon dioxide	CO_2	0.044	194.7 ^f	304	7.38	0.274	0.225	840 ^h	0.016	14,4
Carbon monoxide	CO	0.028	81.7	133	3.50	0.295	0.049	1100	0.023	17.0
Carbon tetrachloride	CCl ₄	0.154	349.7	556	4.56	0.272	0.194	862	0.017	16.0
Cyclohexane	C ₆ H ₆	0.084	353.9	554	4.07	0.273	0.212			
n-Decane	$C_{10}H_{22}$	0.142	447.3	619	2.12	0.247	0.490	1680		
n-Dodecane	$C_{12}H_{26}$	0.170	489.4	659	1.80	0.240	0.562	1690		
DME (dimethyl ether)	C ₂ H ₆ O	0.046	250.6	400	5.37	0.271	0.274	1430		
Ethane	C_2H_6	0.030	184.6	305	4.88	0.285	0.100	1700	0.020	11.0
Ethanol	C ₂ H ₆ O	0.046	351.5	516	6.39	0.248	0.635	1520	0.013	14.2
Ether (diethyl ether)	$C_4H_{10}O$	0.074	307.6	467	3.61	0.260	0.281	1600	0.015	7.5
ETBE (ethyl tert-butyl ether)	C ₆ H ₁₄ O	0.102	345	517	3.11	0.274	0.298	1550		
Ethylene	C ₂ H ₄	0.028	169.5	283	5.12	0.276	0.085	1470	0.018	9.6
Ethylene glycol	$C_2H_6O_2$	0.062	471	645	7.53	0.268	1.137	1410		
Helium (⁴ He)	Не	0.004	4.2	5.3	0.23	0.301	-0.387	5190	0.142	19.0
Helium 3 (³ He)	Не	0.003	3.2	3.3	0.11	0.301	-0.460			
n-Heptane	C7H16	0.100	371	540	2.77	0.263	0.350	1650	0.013	6.5
n-Hexane	C ₆ H ₁₄	0.086	342	508	3.03	0.263	0.296	1700	0.014	6.5
Hydrazine	N_2H_4	0.032	387	653	14.7	0.376	0.325			
Hydrogen	H_2	0.002	20.1	33	1.32	0.305	-0.22	14200	0.168	8.4
(Hydrogen) Deuterium	D_2	0.004	23.6	38	1.66	0.249	-0.16	14200	0.131	12
Hydrogen peroxide ⁱ	H_2O_2	0.034	272.7	728 ⁱ	22			1270		
Mercury ^j	Hg	0.201	630	736	104					
Methane	CH ₄	0.016	112	191	4.60	0.288	0.010	2180	0.031	10.3
Methanol	CH ₄ O	0.032	338.1	513	8.08	0.224	0.559	1350	0.015	9.8
MTBE (methyl tert-butyl ether)	C ₅ H ₁₂ O	0.088	328	497	3.43	0.273	0.267	1500		
- mioi <i>j</i>	l				l					

Neon	Ne	0.020	26.2	44	2.70	0.301	0	1030	0.046	30.0
Nitrogen	N_2	0.028	77.4	126	3.39	0.290	0.038	1040	0.024	16.6
Nitrogen dioxide ^k	NO_2	0.046	294.4	431	10.1	0.233		800	0.017	130
Nitrogen monoxide	NO	0.030	121.2	180	6.55	0.250	0.607	996	0.024	29.4
di-Nitrogen oxide ^l	N_2O	0.044	184.7	310	7.25	0.272	0.160	864	0.015	13.6
n-Octane	C_8H_{18}	0.114	399	569	2.49	0.259	0.394	1700	0.020	7.5
iso-Octane	C_8H_{18}	0.114	372	544	2.59	0.267		1650		
Ozone	O_3	0.048	161.4	268	6.78	0.272				
Oxygen	O_2	0.032	90.2	155	5.08	0.288	0.021	913	0.024	19.1
iso-Pentane	C_5H_{12}	0.072	301.3	461	3.33	0.268	0.227	1680	0.015	11.7
n-Pentane	C ₅ H ₁₂	0.072	309.2	470	3.38	0.262	0.251	1680	0.015	11.7
Phenol	C_6H_6O	0.094	455	694	6.13	0.243	0.426			
Propane	C ₃ H ₈	0.044	231.1	370	4.26	0.281	0.152	1570	0.015	7.4
iso-Propanol	C ₃ H ₈ O	0.060	355.4	508	4.76	0.248	0.669	1540		
Propylene (propene)	C_3H_6	0.042	225.4	365	4.62	0.275	0.148	1460	0.014	8.1
Propylene glycol	$C_3H_8O_2$	0.076	461.3	626	6.10	0.280	1.107			
R12 (CFC-12) (dichlorodifluoromethane)		0.121	243.0	385	4.14	0.280	0.179	573	0.008	12.5
R134a (HFC-134a) (tetrafluoroethane)	CF ₃ CH ₂ F	0.102	246.6	374	4.07	0.258	0.330	840	0.014	12.2
R410A ^m	n.a.	0.073	221.8	345	4.90	0.271	0.296	820		
Sulfur dioxide	SO_2	0.064	263.2	430	7.87	0.264	0.251	607	0.009	11.6
Sulfur hexafluoride ⁿ	SF ₆	0.146	204.9 ^f	319	3.76	0.360	0.210	598	0.12	16.0
Toluene	C ₇ H ₈	0.092	383.7	592	4.13	0.284	0.266			
Tetradecafluorohexane	C_6F_{14}	0.338	329	449	1.83					
Uranium hexafluoride ^o	UF ₆	0.352	329 ^f	503	4.60	0.282	0.092	370	0.009	20
Water (steam) ^p	H ₂ O	0.018	372.8	647.3	22.12	0.229	0.344	2050 ^p	0.025	12.1
Xenon	Xe	0.131	165.0	289.8	5.84	0.291	0	158	0.006	22.5

^aCritical molar volumes can be obtained from $v_{cr}=Z_{cr}RT_{cr}/p_{cr}$, and critical densities from $\rho_{cr}=M/v_{cr}$ (e.g. for acetone $v_{cr}=209\cdot10^{-6}$ m³/mol and $\rho_{cr}=351$ kg/m³.

^bThermal capacities of monoatomic gases do not change with temperature, but for polyatomic gases it increases

more the more atoms has the molecule.

Dynamic viscosity of gases increases with the square root of temperature, and do not change with pressure. Kinematic viscosity $v = \mu/\rho$.

^e Bubble point.

f Sublimation point.

^g Pseudo-critical point (Kay's model).

Data for H₂O₂ pure (H₂O₂ is most used in aqueous solutions). Critical temperature extrapolated from

corresponding states theory, because H₂O₂ decomposes violently at such high temperatures).

^j Mercury is obtained by oxidation of cinnabar at some 600 °C and vapour condensation. Mercury vapour should not exceed 0.1 mg/m³ in breathing air (notice that saturated air at 20 °C already contains more than that

^k Nitrogen dioxide, NO₂, is a very toxic brown gas at normal conditions (but readily condensable, T_b =21.3 °C). All nitrogen oxides slowly decomposing to nitrogen and oxygen, making it difficult to keep them in pure state; besides, NO₂ is paramagnetic, but readily dimerises to dinitrogen tetroxide, N₂O₄, a diamagnetic pale-

^c Thermal conductivity of gases increases with the square root of temperature, decreases with the square root of molar mass, and do not change with pressure. Thermal diffusivity $a \equiv k/(\rho c_p)$. According to simple generalised transport theory in gases, thermal diffusivity, mass diffusivity and kinematic viscosity of gases have the same values.

h Most gas properties vary a lot near the critical point, what may be here the case; e.g., for CO₂ gas at 288 K and 100 kPa, thermal capacity at constant pressure is c_p =840 J/(kg·K), growing at constant T=288 K from c_p =833 $J/(kg \cdot K)$ at very low pressure, to $c_p=3010 J/(kg \cdot K)$ at the saturation pressure (5063 kPa). Thermal capacity in the ideal gas limit (p \rightarrow 0) varies almost linearly (e.g. c_p =753 J/(kg·K) at the triple-point temperature, c_p =850 $J/(kg \cdot K)$ at the critical-point temperature).

vellow or colourless gas with double density than NO2 (e.g. when heating from above an ampoule containing NO₂, some N₂O₄ is formed at the top (2NO₂(g)=N₂O₄(g)+57 kJ/mol), which can be seen sinking to the bottom because of buoyancy). The NO₂/N₂O₄ equilibrium depends on temperature, NO₂ being favoured at high temperatures and N₂O₄ at low temperatures; when condensing (at 21.3 °C at 100 kPa), most of the liquid is N_2O_4 which is colourless or pale brownish, and if solidified (at -11.2 °C) a white solid appears. The liquid N₂O₄ is a hypergolic propellant that spontaneously reacts upon contact with various forms of hydrazine, which makes the pair a popular bipropellant for spacecraft rockets.

¹Di-nitrogen oxide, N₂O, also known as nitrous oxide (NO is nitric oxide), or nitrogen hemi-oxide, or nitrogen protoxide, or laughing gas, is used in respiratory anaesthesia since the pioneering trials of Sir Humphrey Davy in 1789 shortly after its discovery by J. Prietsley in 1772, as a non-flammable non-ozone-depleting propellant in aerosol cans, and as a fuel additive to enhance combustion (it liberates oxygen; if added as compressed liquid in the intake manifold, it greatly increases fuel load). It has a global warming potential (GWP) of 300

times that of CO₂, being the third contributor to anthropogenic GWP, after CO₂ and CH₄.

R410A is a near-azeotropic mixture of R32 (difluoromethane, CH₂F₂) and R125 (pentafluoroethane, CHF₂CF₃), 50/50 by weight (70/30 molar), which can be approximated as a pure substance. The critical point of a binary mixture is defined as the point where $\partial^2 g/\partial x^2$ and $\partial^3 g/\partial x^3$ are simultaneously zero, where g is the

Gibbs energy and x is the mole fraction of a component.

Sulfur hexafluoride is a synthetic gas used as insulator for electrical equipment (breakdown potential three times larger than air, and as a fluorine source for edging in the electronics industry. It is a non-flammable, non-toxic gas, which decomposes at 750 K; it has low water solubility, and a very large IR absortance (it is the most potent greenhouse gas, GWP=22 000), what has been used as a trace gas for gas-leakage detection.

Ouranium hexafluoride, perhaps the heaviest simple molecule, is the only uranium compound presently used in industrially enrichment of U-235, both on gas diffusion and on gas centrifugation processes. At room

conditions, it is a white crystalline solid with a high vapour pressure (p_v =11 kPa at 20 °C). ^p The boiling point of water at 100 kPa is T_b =372.75±0.02 K (99.60±0.02 °C), whereas at 101.325 kPa (1 atm) it is 373.12 \pm 0.02 K (99.97 \pm 0.02 °C). Steam thermal capacity varies appreciably with T and p: at $p\rightarrow 0$, $c_p(T)$ grows almost linearly from 1890 J/(kg·K) at 100 °C to 2130 J/(kg·K) at 500 °C, but a high-p it has a minimum (e.g. at 200 kPa, c_p =2180 J/(kg·K) as saturated vapour at 120 °C, drops to a minimum c_p =2010 J/(kg·K) at 230 ${}^{\circ}$ C, and grows to match $c_p(T,p\rightarrow 0)$ at high-T, say $c_p=2130$ J/(kg·K) at 500 ${}^{\circ}$ C). For the perfect gas model in adiabatic expansion of steam, a value of $\gamma = c_p/c_v = 1.33$ is recommended.