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COMBUSTION MODELLING OF A GASOLINE 
ENGINE BY THE WEIBE FUNCTION 

 
A thermodynamic simulation of a reciprocating-engine cycle is to be performed using a Weibe function to 
model the combustion process, with typical parameters for a spark-ignition internal-combustion-engine 
(SI-ICE): a=5, m=3, θbs=-10º, ∆θbs=60º. The model is to be applied to an engine with the following 
characteristics (Yamaha YZ250FN motorcycle): single cylinder (Z=1), four-stroke (S=4), 250 cc (Vd=249 
cm3 of displacement), bore D=0.0770 m, stroke L=0.0526 m, and compression ratio r=12.5. Only the 
compression and expansion strokes are to be simulated, with the crank angle (θ) as the independent 
variable, and only at the steady state corresponding to full load at n=8500 rpm. Assume the cylinder is 
supplied with an stoichiometric mixture at ambient conditions, with unit volumetric efficiency, and 
approximate gasoline properties by n-octane if needed. To do: 
a) Compute clearance volume, trapped mass of air and fuel, and chemical energy released per cycle.  
b) Compute chemical energy release as a function of θ, for the ideal Otto cycle and for the Weibe model, 

and make a plot. 
c) Establish the energy balance for the gas, and get a single differential equation to compute the pressure 

profile p(θ). 
d) Solve numerically for p(θ), T(θ) and the contribution to the shaft work at each step, and plot them. 
e) Find the mean effective pressure, the shaft power and the energy efficiency of the engine 
 

 Se va a hacer una simulación termodinámica del proceso de combustión en un motor alternativo 
mediante la función de Weibe, con parámetros típicos de un motor de encendido provocado (a=5, m=3, 
θbs=-10º, ∆θbs=60º), aplicándolo a un motor de las siguientes características (Yamaha YZ250FN): un sólo 
cilindro (Z=1), de cuatro tiempos (S=4), 250 cm3 (Vd=249 cm3 de desplazamiento), diámetro D=0,0770 
m, carrera L=0,0526 m, y relación de compresión de r=12,5. Sólo se van a simular las carreras de 
compresión y expansión, con el ángulo de cigüeñal, θ, como variable independiente, y sólo en régimen 
estacionario a plena carga a n=8500 rpm. Suponer que el cilindro se llena con una mezcla estequiométrica 
en condiciones ambiente, con rendimiento volumétrico unidad, y aproximar las propiedades de la gasolina 
por las del n-octano. En particular, se pide:  
a) Calcular el volumen muerto, las masas de aire y combustible atrapadas, y la energía química liberada 

por ciclo.  
b) Calcular la energía química liberada en función de θ, para el ciclo Otto ideal y en el modelo de Weibe. 
c) Establecer el balance energético para el gas, y obtener una ecuación diferencial para el perfil de 

presiones, p(θ). 
d) Resolver numéricamente lo anterior, y hallar p(θ), T(θ) y la contribución al trabajo al eje en cada etapa 

del ciclo. 
e) Calcular la presión media efectiva, la potencia al eje, y el rendimiento energético del motor. 
 
Solution. 
a) Compute clearance volume, trapped mass of air and fuel, and chemical energy released per cycle.  
 

http://imartinez.etsiae.upm.es/%7Eisidoro/pr4/htm/c16/p311.html
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First, there is a redundancy in data, since Vd=πD2L/4; the discrepancy is Vd−πD2L/4=249∙10-6 

−π·0.07702∙0.0526/4=4∙10-6 m3; i.e. a 1.6% attributable to data uncertainty. Let use the direct data 
Vd=249∙10-6 m3. 
 
Clearance volume Vcl is deduced from compression ratio: r=(Vcl+Vd)/Vcl; Vcl=Vd/(r-1)=249∙10-6/(12.5-1)= 
22∙10-6 m3 (22 cm3). 
 
Trapped mass of mixture is deduced from ideal gas law:  
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(checking: ¼ litre approx. ¼ gram); this is roughly the mass of air, since air/fuel ratios are large. 
 
For the stoichiometric air/fuel ratio, equating C8H18+aO2=8CO2+9H2O one gets a=8+9/2=12.5 and thence 
A=a/c21=12.5/0.21=59.5 molair/moloctane=59.5(0.029/0.114)=15.1 kgair/kgoctane. 
 
For the four-stroke cycle, to that mass of fuel, mF=ma/A=0.33∙10-3/15.1=0.022∙10-3 kg, corresponds a 
heating value of: 
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where a hHHV,gasoline=46 MJ/kg available from the fuel tables was used (the values for octane can be 
computed from standard thermochemical tables as hHV=-8h⊕fCO2-9h⊕fCO2+8h⊕fCO2, what yields 
hHHV,n-octane=48.0 MJ/kg and hLHV,n-octane=44.5 MJ/kg). In the air-standard Otto cycle, both for constant 
volume heat deposition and for finite heat-release rate, the real combustion process (of internal energy 
exchange from chemical energy to thermal energy) is be modelled as a simple heat flow, in the amount 
Qcycle, to unreacting air. 
 
b) Compute chemical energy release as a function of θ, for the ideal Otto cycle and for the Weibe model, 
and make a plot. 
 
There is an instantaneous heat addition in the ideal Otto cycle at the top dead centre, TDC (constant 
volume process), i.e. the accumulated energy added is zero up to the TDC and Qcycle=1010 J after that, 
whereas in the Weibe model the accumulated energy added is a smooth function that starts at -10º crank-
angle and prolongs during 60º for completion; the relative value, coincident with the fuel mass-fraction 
burnt, is: 
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and both, accumulated-heat and their derivatives, for the ideal-Otto and Weibe-function models, are 
shown in Fig. 1. 

 

 
Fig. 1. Heating laws during the compression and expansion strokes, according to ideal Otto cycle and to 

Weibe function. 
 
c) Establish the energy balance for the gas, and get a single differential equation to compute the pressure 
profile p(θ). 
 
Once the intake valve closes (say at -140º TDC; it might have opened at about -185º TDC and have a 
crossing with the exhaust valve, that might close at about -178º TDC), the energy balance for the control 
mass in an infinitesimal evolution, assumed to have the air properties, is 
 
 mcvadT/dθ=dQ/dθ−pdV/dθ (4) 
 
where only one-zone model (uniform temperature in the whole mass) is used, with a constant thermal 
capacity at constant volume, cv, and with the particular value for room air, instead of that of the mixture 
and at highly changing temperatures; moreover, the same simplification will be later done for γ; i.e we 
take γ=1.4 in spite that for the air/fuel mixture is a little lower (in the case of large-molecule fuels), for the 
exhaust gases is always lower, and it further decreases with temperature (e.g. γ=1.3 at 1000 K). 
 
The term dQ/dθ in (4) is the net heat transfer to the control mass, accounting for the real heat transfer to 
or from the walls, and the virtual heat transfer corresponding to the chemical energy release: 
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where h, the convective heat-transfer coefficient, can be estimated from a typical Nusselt correlation 
Nu=aRen with the Reynolds number corresponding to the piston velocity. In spite of the very high 
temperatures involved, this real heat-transfer term is not too-high in practice, because at the steady state 
the walls reach an intermediate temperature, Tw, (with small fluctuations along the cycle), decreasing the 
temperature jump and giving back some heat to the cold gas during the initial phase of compression. No 
real heat transfer is incorporated in the present model (h=0).  
 
The term dV/dθ is in (4) is given by the slide-rod / crank-shaft mechanism: 
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in terms of the clearance volume Vcl=22∙10-6, the displacement volume Vd=249 cm3, and the slide-rod 
/crank length-ratio, typically of order s=3 (has very small influence). As we want to go to a single 
equation in the pressure evolution, expressions for dT/dθ and dQ/dθ must be substituted in terms of p(θ). 
The former is found from the ideal gas equation: 
 
 maRaT= pV,  maRadT/dθ=Vdp/dθ +pdV/dθ (7) 
 
and the dQ/dθ term is obtained deriving Qacc from (3), taking care because of the piecewise character of 
the function. Combining (6) with (4) yields: 
 
 Vdp/dθ +pdV/dθ=(Ra/cva)(dQacc/dθ−pdV/dθ) (8) 
 
an ordinary differential equation in p(θ) after substitution of the two explicit terms dQacc/dθ and dV/dθ. 
from (3) and (5).  
 
d) Solve numerically for p(θ), T(θ) and the contribution to the shaft work at each step, and plot them. 
 
Equation (5) is an non-linear ordinary first-order differential equation, easily solved numerically by the 
Euler or better Runge-Kutta method, starting with the initial conditions prevailing at the inlet-valve-close 
position (say -140º TDC), with dQacc/dθ=0 up to the spark (the delay to start burning is a few degrees and 
is neglected here), and with dQacc/dθ given by (1) from there up to the exhaust-valve-open position (say 
130º TDC), although, in what follows, we do not take these valve events into consideration (i.e. we take 
them at -180º TDC and +180º TDC, or –π and π, since we shall work in radians). 
 
In the case of the ideal Otto cycle there is a closed solution, since the combination of the ideal gas 
equation and the energy equation for Qacc=0 (except at the singularity) yields the isentropic relation 
pVγ=constant, i.e.: 
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starting at θ=−π with p1=p0=100 kPa, T1=T0=288 K and ending at the TDC θ=0 with p2=3.4 MPa, 
T2=790 K. The constant-volume heat addition cause a jump in temperature and pressure: 
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up to p2=22 MPa, T2=5000 K, followed by an isentropic expansion: 
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to p4=640 kPa, T4=1800 K. Figures 2 and 3 present pressure and temperature evolution with both models. 
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Fig. 2. Cylinder pressure p, versus crank-angle θ, for the ideal Otto cycle and Weibe model (thick line 

shows burning period). 
 

 
Fig. 3. Cylinder temperature T, versus crank-angle θ, for the ideal Otto cycle and Weibe model (thick line 

shows burning period). 
 
If a very short burning period is introduced in the Weibe model, the numerical simulation recovers the 
ideal Otto cycle (instantaneous heat deposition). The most relevant difference between the instantaneous 
model and the 60º crank-angle burning-period is the lowering of the pressure (and to a lesser extent) 
temperature peaks, with a shift on the maximum position. 
 
The contribution to the shaft work at each step is computed as follows. First, the shaft work is deduced 
from the pressure and volume change of the gases, Wshaft=∫(p-p0)dV, where p0 is crank-case pressure 
(assumed atmospheric), and thence applied to an infinitesimal time-step: 
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where M and ω are the torque and angular speed of the shaft. The contribution to the shaft work at each 
step is thus the shaft torque M=dWshaft/dθ, that is represented in Fig. 4. 
 

 
Fig. 4. Shaft torque M=dWshaft/dθ=(p-p0)dV/dθ, versus crank-angle θ, for the ideal Otto cycle and Weibe 

model (thick line shows burning period). 
 
Notice that the large difference on peak pressure between the instantaneous model and the 60º crank-
angle burning-period, seen in Fig. 2, does not manifest in the instantaneous work (Fig. 4), because it 
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occurs near TDC, and volume variation with crank-angle there is very small, yielding a negligible 
contribution to (p-p0)dV.  
 
The p-V plot is also worth (the traditional ‘indicated’ diagram); for the ideal Otto model it is directly 
drawn with equations (8--10), whereas for the Weibe model a parametric representation p(θ)-V(θ) is used. 

 
Fig. 5. Pressure-volume diagram for both the ideal Otto cycle and Weibe simulation. 

 
e) Find the mean effective pressure, the shaft power and the energy efficiency of the engine. 
The mean effective pressure, pMEF, is the average effective pressure of the cylinders as they progress 
through all strokes, i.e. the average overpressure that, times the total displacement-volume, would yield 
the same work: 
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In the case of the ideal Otto cycle there is a closed solution for the energy efficiency in the conversion of 
heat to work: 
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and, upon substitution of the values, one gets pMEF=∫(p-p0)dV/Vd=2.35 MPa for the ideal Otto cycle, with 
Wshaf,cycle=630 J, whereas the numerical solution for the Weibe model yields Wshaf,cycle=590 J, pMEF=2.37 
MPa and ηe=0.59. 
 
Of course, those values for the energy conversion efficiency are unrealistic, the reasons being that we did 
not consider heat transfer through the cylinder walls (>10%), engine friction (some 10% at full load, 
much more at partial loads), unburnt fuel (some 5% in SI-engines), fluid pumping work to renovate gases 
(some 5%), and fluid loses around piston rings (blow-by, some 1%). 
 
Heat transfer inside the cylinder is difficult to model because of the turbulent motion and because of the 
different temperature zones. Air enters from the intake manifold that is at some 60 ºC, through the inlet 
valve that is at some 250 ºC, impinging on the piston head that is at some 300 ºC (being refrigerated 



Combustion modelling of a gasoline engine by the Weibe function 7 

somehow by oil at 70 ºC), whereas the cylinder walls are at some 180 ºC (being refrigerated by water at 
100 ºC), the sparkplug at 600 ºC, the exit valve at about 650 ºC.  
 
Comments. Notice that the compression ratio for this engine, r=12.5, is in the upper limit for SI-engines, 
where typical values are about r=9..10; similarly, the speed (8500 rpm) is in the upper limit (typical 
values of full load regime for SI-engines are 5000..6000 rpm). 
 
ADDITIONAL data for this Yamaha engine: rough external measurement of 0.35 x 0.41 x 0.51 meters, 
not including the exhaust system, i.e. some 73 litres in volume, with an approximate dry weigh of 27 kg 
including a 5-speed transmission and cooling pump. Its specific fuel consumption is SFC=330 g/kWh, 
and maximum power is 30.5 kW. 
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