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VIEW FACTOR DEFINITION 

The view factor F12 is the fraction of energy exiting an isothermal, opaque, and diffuse surface 1 (by 

emission or reflection), that directly impinges on surface 2 (to be absorbed, reflected, or transmitted). 

View factors depend only on geometry. Some view factors having an analytical expression are compiled 

below. We will use the subindices in F12 without a separator when only a few single view-factors are 

concerned, although more explicit versions, like F1,2 , or even better, F1→2, could be used. 

 

From the above definition of view factors, we get the explicit geometrical dependence as follows. 

Consider two infinitesimal surface patches, dA1 and dA2 (Fig. 1), in arbitrary position and orientation, 

defined by their separation distance r12, and their respective tilting relative to the line of centres, 1 and 

2, with 01/2 and 02/2 (i.e. seeing each other). The expression for dF12 (we used the differential 

symbol ‘d’ to match infinitesimal orders of magnitude, since the fraction of the radiation from surface 1 
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that reaches surface 2 is proportional to dA2), in terms of these geometrical parameters is as follows. The 

radiation power intercepted by surface dA2 coming directly from a diffuse surface dA1 is the product of its 

radiance L1=M1/, times its perpendicular area dA1, times the solid angle subtended by dA2, d12; i.e. 

d212=L1dA1d12=L1(dA1cos(1))dA2cos(2)/r12
2. Thence: 
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Fig. 1. Geometry for view-factor definition. 

 

When finite surfaces are involved, computing view factors is just a problem of mathematical integration 

(not a trivial one, except in simple cases). Notice that the view factor from a patch dA1 to a finite surface 

A2, is just the sum of elementary terms, whereas for a finite source, A1, the total view factor, being a 

fraction, is the average of the elementary terms, i.e. the view factor between finite surfaces A1 and A2 is:  
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Recall that the emitting surface (exiting, in general) must be isothermal, opaque, and Lambertian (a 

perfect diffuser for emission and reflection), and, to apply view-factor algebra, all surfaces must be 

isothermal, opaque, and Lambertian. Finally notice that F12 is proportional to A2 but not to A1. 

View factor algebra 

When considering all the surfaces under sight from a given one (let the enclosure have N different 

surfaces, all opaque, isothermal, and diffuse), several general relations can be established among the N2 

possible view factors Fij, what is known as view factor algebra:  

 Bounding. View factors are bounded to 0Fij≤1 by definition (the view factor Fij is the fraction 

of energy exiting surface i, that impinges on surface j). 

 Closeness. Summing up all view factors from a given surface in an enclosure, including the 

possible self-view factor for concave surfaces, 1ij

j

F  , because the same amount of radiation 

emitted by a surface must be absorbed. 

 Reciprocity. Noticing from the above equation that dAidFij=dAjdFji=(cosicosj/(rij
2))dAidAj, it 

is deduced that 
i ij j jiAF A F . 
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 Distribution. When two target surfaces (j and k) are considered at once, 
,i j k ij ikF F F   , based 

on area additivity in the definition. 

 Composition. Based on reciprocity and distribution, when two source areas are considered 

together,    ,i j k i ik j jk i jF A F A F A A    . 

 

One should stress the importance of properly identifying the surfaces at work; e.g. the area of a square 

plate of 1 m in side may be 1 m2 or 2 m2, depending on our considering one face or the two faces. Notice 

that the view factor from a plate 1 to a plate 2 is the same if we are considering only the frontal face of 2 

or its two faces, but the view factor from a plate 1 to a plate 2 halves if we are considering the two faces 

of 1, relative to only taking its frontal face. 

 

For an enclosure formed by N surfaces, there are N2 view factors (each surface with all the others and 

itself). But only N(N1)/2 of them are independent, since another N(N1)/2 can be deduced from 

reciprocity relations, and N more by closeness relations. For instance, for a 3-surface enclosure, we can 

define 9 possible view factors, 3 of which must be found independently, another 3 can be obtained from 

i ij j jiAF A F , and the remaining 3 by 1ij

j

F  .    

View factors with two-dimensional objects 

Consider two infinitesimal surface patches, dA1 and dA2, each one on an infinitesimal long parallel strip 

as shown in Fig. 2. The view factor dF12 is given by (1), where the distance between centres, r12, and the 

angles 1 and2 between the line of centres and the respective normal are depicted in the 3D view in Fig. 

2a, but we want to put them in terms of the 2D parameters shown in Fig. 2b (the minimum distance a=
2 2x y , and the1 and2 angles when z=0, 10 and20), and the depth z of the dA2 location. The 

relationship are: r12=
2 2 2x y z  =

2 2a z , cos1=cos10cos, with cos1=y/r12=(y/a)(a/r12), 

cos10=y/a, cos=a/r12, and cos2=cos20cos, therefore, between the two patches: 
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 (3) 

 
Fig. 2. Geometry for view-factor between two patches in parallel strips: a 3D sketch, b) profile view. 

 

Expression (3) can be reformulated in many different ways; e.g. by setting d2A2=dwdz, where the ‘d2’ 

notation is used to match differential orders and dw is the width of the strip, and using the relation 
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ad10=cos20dw. However, what we want is to compute the view factor from the patch dA1 to the whole 

strip from z=∞ to z=∞, what is achieved by integration of (3) in z: 
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For instance, approximating differentials by small finite quantities, the fraction of radiation exiting a 

patch of A1=1 cm2, that impinges on a parallel and frontal strip (10=20=0) of width w=1 cm separated a 

distance a=1 m apart is F12=w/(2a)=0.01/(2·1)=0.005, i.e. a 0.5 %. It is stressed again that the exponent in 

the differential operator ‘d’ is used for consistency in infinitesimal order. 

 

Now we want to know the view factor dF12 from an infinite strip dA1 (of area per unit length dw1) to an 

infinite strip dA2 (of area per unit length dw2), with the geometry presented in Fig. 2. It is clear from the 

infinite extent of strip dA2 that any patch d2A1=dw1dz1 has the same view factor to the strip dA2, so that 

the average coincides with this constant value and, consequently, the view factor between the two strips is 

precisely given by (4); i.e. following the example presented above, the fraction of radiation exiting a long 

strip of w1=1 cm width, that impinges on a parallel and frontal strip (10=20=0) of width w2=1 cm 

separated a distance a=1 m apart is F12=w2/(2a)=0.01/(2·1)=0.005, i.e. a 0.5 %.  

 

Notice the difference in view factors between the two strips and the two patches in the same position as in 

Fig. 2b: using dA1 and dA2 in both cases, the latter (3D case) is given by the general expression (1), which 

takes the form dF12=cos10cos20dA2/(a2), whereas in the two-strip case (2D), it is 

dF12=cos10cos20dA2/(2a), where A2 has now units of length (width of the strip). 

Very-long triangular enclosure 

Consider a long duct with the triangular cross section shown in Fig. 3. We may compute the view factor 

F12 from face 1 to face 2 (inside the duct) by double integration of the view factor from a strip of width 

dw1 in L1 to strip dw2 in L2; e.g. using de strip-to-strip view factor (4), the strip to finite band view factor 

is F12=cos10d10/2=(sin10endsin10start)/2, where 10start and 10end are the angular start and end 

directions subtended by the finite band 2 from infinitesimal strip 1. Let see an example to be more 

explicit. 

 
Fig. 3. Triangular enclosure. 

 

Example 1. Find the view factor F12 from L1 to L2 for =90º in Fig. 3, i.e. between two long perpendicular 

strips touching, by integration of the case for infinitesimal strips (4). 
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Sol. Referring to Fig. 2b, the view factor from a generic infinitesimal strip 1 at x (from the edge), to the 

whole band at 2, becomes F12=(sin10endsin10start)/2=(1
2 2

2x x L )/2, and, upon integration on 

x, we get the view factor from finite band 1 to finite band 2: F12=(1/
1L )(1

2 2

2x x L )dx/2=

   2 2

1 2 1 2 12L L L L L   . 

 

But it is not necessary to carry out integrations because all view factors in such a simple triangular 

enclosure can be found by simple application of the view-factor algebra presented above. To demonstrate 

it, we first establish the closure relation 1ij

j

F   at each of the three nodes, noticing that for non-

concave surfaces Fii=0; then we multiply by their respective areas (in our case L1, L2, L3, by unit depth 

length); next, we apply some reciprocity relations, and finally perform de combination of equations as 

stated below: 
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We see how easy it is now to recover the result for perpendicular bands of width L1 and L2 solved in 

Example 1, F12=    2 2

1 2 1 2 12L L L L L   ; e.g. the view factor between equal perpendicular bands is 

F12=  2 2 2 , i.e. 29 % of the energy diffusively outgoing a long strip will directly reach an 

equal strip perpendicular and hinged to the former, with the remaining 71 % being directed to the other 

side 3 (lost towards the environment if L3 is just an opening). 

 

Even though we have implicitly assumed straight-line cross-sections (Fig. 3), the result (8) applies to 

convex triangles too (we only required Fii=0), using the real curvilinear lengths instead of the straight 

distances. As for concave bands, the best is to apply (8) to the imaginary straight-line triangle, and 

afterwards solve for the trivial enclosure of the real concave shape and its corresponding virtual straight-

line.  

 

Example 2. Find the view factor F12 between two long hemicylindrical strips touching with perpendicular 

faces (Fig. E2). 

Sol. Let 1’ and 2’ be the imaginary planar faces of the hemicyliners. From Example 1 applied to equal 

perpendicular straight strips, F1’2’=    2 2

1' 2' 1' 2' 1'2L L L L L   =  2 2 2 =0.293, where 

L1’=L2’ are the diametrical strips to L1 and L2 (dashed in Fig. E2), which we can take as unit 

length; the enclose is completed with F1’3=1F1’2’=0,707. Let consider now the cylindrical 

surfaces; first, it is clear that the radiation arriving at 2’ (from 1’) will arrive at 2 also, i.e. 

F1’2’=F1’2; second, it is obvious that F1’1=1, i.e. all radiation outgoing downwards from the planar 

strip 1’ will go to 1, and, by the reciprocity relation, F11’=A1’F1’1/A1=1·F1’1/(/2)=2/= 0.637, and 

hence F11=1F11’’=12/=0,363. In summary, from the radiation cast by hemicylinder 1, a 
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fraction F11=36 % goes against the same concave surface, and, from the remaining F11’=64 % that 

goes upwards, 29 % of it goes towards the right (surface 2), and the 71 % remaining impinged on 

surface 3; in consequence, F12=F11’F1’2=0.637·0.293=  2 2  =0.186, F13=F11’F1’3= 

0.637·0.707= 2  =0.450, and F11=12/=0.363 (check: 0.363+0.186+0.4501). 

 
Fig. E2. Sketch to deduce the view factor F12 between two long hemicylinders (1) and (2). 

 

Now we generalise this algebraic method of computing view factors in two-dimensional geometries to 

non-contact surfaces. 

The crossed string method 

For any two non-touching infinitely-long bands, 1 and 2 (Fig. 4), one can also find all the view factors 

from simple algebraic relations as in the triangular enclosure before, extending the result (8) to what is 

known as crossed-string method: 
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 (9) 

 

 
Fig. 4. Sketch used to deduce F12 in the general case of two infinitely long bands. 

 

The result (9) is deduced by applying the triangular relation (8) to triangle 134 (shadowed in Fig. 4) 

and triangle 156, plus the closure relation to the quadrilateral 1326 (F13+F12+F16=1), namely:   
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 (10) 

 

This procedure to compute view factors in two-dimensional configurations (the crossed-string method), 

was first developed by H.C. Hottel in the 1950s. The extension to non-planar surfaces 1 and 2 is as 

already presented for triangular enclosures. A further extension is possible to cases where there are 
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obstacles (two-dimensional, of course) partially protruding into sides 3 and/or 6 in the quadrilateral 

1326 (Fig. 4); it suffices to account for the real curvilinear length of each string when stretched over 

the obstacles, as shown in the following example. 

 

Example 3. Find the view factor between two long parallel cylinders of equal radii R, separated a distance 

2 2 R between centres, using the crossed-string method. 

Sol. With this clever separation, angle  in Fig. E1 happens to be =/4 (45º), making calculations 

simpler. We get F12 from (10) by substituting L1=2R (the source cylinder), L4 and L5 (the 

crossing strings) each by the length abcde, and L3 and L6 (the non-crossing strings) each by 2 2 R 

between. The length abcde is composed of arc ab, segment bc, and so on, which in our special 

case is ab=R=(/4)R bc=R, and abcde=2(ab+cd)=(/2)R+2R, and finally 

F12=(L4+L5L3L6)/(2L1)=(2abcde4 2 R)/(4R)=(R+4R4 2 R)/(4R)=1/4+(1 2 )/=0.12, 

as can be checked with the general expression for cylinders in the compilation following. 

 

 
Fig. E1. Sketch used to deduce F12 between two infinitely long parallel cylinders. 

 

View factor with an infinitesimal surface: the unit-sphere and the hemicube methods 

The view factor from an infinitesimal surface dA1 to a finite surface A2, F12=cos(1)d12/, shows that it 

is the same for any surface subtending a slid angle 12 in the direction 1. Hence, a convenient way to 

compute F12, first proposed by Nusselt in 1928, is to find the conical projection of A2 on a sphere of 

arbitrary radius r centred on dA1 (this projection has the same 12), and then project this spherical patch 

on the base plane containing dA1, as sketched in Fig. 5a (the conical projection on the sphere is As, and its 

normal projection on the base plane is Ap). The view factor F12 is therefore the fraction of the circle 

occupied by Ap, i.e. F12=Ap/(r2). This was originally an experimental method: if an opaque reflective 

hemisphere is put on top of dA1, and a photography is taken from the zenith, the measure of the reflected 

image of A2 (Ap), divided by the area of the circle, yields the view factor (in practice, the radius of the 

sphere was taken as unity, so the unit-sphere naming). 

 

The same reasoning can be followed changing the intermediate hemisphere by any other convex surface 

covering the 2 steradians over dA1, e.g. the hemicube method uses an intermediate hexahedron or cube 

centred in dA1, what can simplify computations, since the discretization of the planar faces in small 

patches is simpler, and the view factors of every elementary patch in a rectangular grid on the top and 
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lateral faces of the hemicube can be precomputed; Fig. 5b shows the hemicube geometry in comparison 

with the unit-sphere geometry. 

 
Fig. 5. a) The unit-sphere method, and b) its comparison with the hemicube method (Howell et al.). 

WITH SPHERES 

Patch to a sphere 

Frontal 

Case View factor Plot 

From a small planar 

surface facing a sphere of 

radius R, at a distance H 

from centres, with 

hH/R. 

 

12 2

1
F

h
  

 

(e.g. for h=2, F12=1/4) 

 

Level 

Case View factor Plot 

From a small planar plate 

(one face or both) level 

to a sphere of radius R, at 

a distance H from 

centres, with hH/R. 

 

12 2

1 1
arctan

x
F

x h

 
  

 
    

with 
2 1x h   

(
12 1

1 2 2
1

2h
F h


   ) 

 

(e.g. for h=2, F12=0.029)  

Tilted 

Case View factor Plot 
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From a small planar 

surface tilted to a sphere 

of radius R, at a distance 

H from centres, with 

hH/R; the tilting angle  

is between the normal 

and the line of centres. 

 

For the facing surface: 

-if ||arccos(1/h) (i.e. plane not cutting 

the sphere), 

      12 2

cos
F

h


  

-if  ||>arccos(1/h) (i.e. plane cutting the 

sphere), 

 2

12 2

2

1
cos arccos sin 1

sin 11
arctan

F y x y
h

y

x

 






  

 
 
 
 

 with  2 1, cotx h y x      

 

For the whole plate (the two surfaces): 

-if ||arccos(1/h) (i.e. plane not cutting 

the sphere, hence F12=0 for the back side), 

      12 2

cos

2
F

h


  

-if  ||>arccos(1/h) (i.e. plane cutting the 

sphere), F12 can be obtained as the 

semisum of values for the facing surface 

and for the opposite surface, the latter 

obtained as the complement angle (i.e. 

with → ). 

 

(e.g. for h=1.5 and =/3 (60º): 

 F12=0.226 for the facing side, 

F12=0.004 for the opposite side, and 

F12=0.115 for the two-side plate) 

 

 

Patch to a spherical cap 

Case View factor Plot 

From a small planar plate 

facing a spherical cap 

subtending a half-cone 

angle  (or any other 

surface subtending the 

same solid angle). 

2

12 sinF   

 

(e.g. for =45º, F12=1/2) 

 

Notice that the case ‘patch to frontal 

sphere’ above, can be recovered in 

our case with max=arcsin(R/H). 
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Sphere to concentric external cylinder 

Case View factor Plot 

From a sphere (1) to 

interior surface of a 

concentric cylinder (2) of 

radius R and height 2H, 

hH/R. Sphere radius, 

Rsph, is irrelevant but 

must be RsphH. 

 

12
21

h
F

h



 

 

 

(e.g. for H=R, i.e. h =1, F12=0.707) 

 

Disc to frontal sphere 

Case View factor Plot 

From a disc of radius R1 

to a frontal sphere of 

radius R2 at a distance H 

between centres (it must 

be H>R1), with hH/R1 

and r2R2/R1. 

 

2

12 2

2

1
2 1

1
1

F r

h

 
 
  
 

 
 

 

 

(e.g. for h=r2=1, F12=0.586) 

 

From a sphere of radius 

R1 to a frontal disc of 

radius R2 at a distance H 

between centres (it must 

be H>R1, but does not 

depend on R1), with 

hH/R2. 

12

2

1 1
1

2 1
1

F

h

 
 
  
 

 
 

 

 

(e.g. for R2=H and R1≤H, F12=0.146)  
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Cylinder to large sphere 

Case View factor Plot 

From a small cylinder 

(external lateral area 

only), at an altitude 

H=hR and tilted an angle 

, to a large sphere of 

radius R,   is between 

the cylinder axis and the 

line of centres). 

 

Coaxial (=0): 

 
12

arcsin1

2

ss
F

h 
    

with 
2

1
1s

h
   

Perpendicular (=/2): 

 
1

12 2 2
0

E d4

1

h x x x
F

x



  

with elliptic integrals E(x). 

 

Tilted cylinder: 

 
1

arcsin
22

12 2

0 0

sin 1 d dh z
F



 

  



 
 
 

 


    

with 

   

     

cos cos

sin sin cos

z  

  

 


 

(e.g. for h=1 and any , F12=1/2) 

 

 

Cylinder to its hemispherical closing cap 

Case View factor Plot 

From a finite cylinder 

(surface 1) of radius R 

and height H, to its 

hemispherical closing 

cap (surface 2), with 

r=R/H. Let surface 3 be 

the base, and surface 4 

the virtual base of the 

hemisphere. 

 

11 1
2

F


  , 12 13 14
4

F F F


    

21
4

F
r


 , 22

1

2
F  , 23

1

2 4
F

r


  , 

31
2

F
r


 , 32 1

2
F

r


  , 34 1

2
F

r


   

 

with 
24 1 1r

r


 
  

 

(e.g. for R=H, F11=0.38, F12=0.31, 

F21=0.31, F22=0.50, F23=0.19, 

F31=0.62, F32=0.38, F34=0.38) 

 



Radiative view factors 13 

 

 

 

Sphere to sphere 

Small to very large 

Case View factor Plot 

From a small sphere of 

radius R1 to a much 

larger sphere of radius R2 

at a distance H between 

centres (it must be H>R2, 

but does not depend on 

R1), with hH/R2. 

 

12 2

1 1
1 1

2
F

h

 
    

 

 

 

(e.g. for H=R2, F12=1/2) 

 

Concentric spheres 

Case View factor Plot 

Between concentric 

spheres of radii R1 and 

R2>R1, with rR1/R2<1. 

 

F12=1 

F21=r2 

F22=1r2
 

 

(e.g. for r=1/2, F12=1, F21=1/4, F22=3/4) 

 

Sphere to concentric hemisphere 

Case View factor Plot 

From a sphere of radius 

R1 to a larger concentric 

hemisphere of radius 

R2>R1, with RR2/R1>1. 

Let the enclosure be ‘3’. 

 

F12=1/2, F13=1/2, F21=1/R2, 

F23=1F21F22, 22 2

1 1
1

2
F

R

 
  

 
 

with 

 2 21 1 1
1 2 arcsin

2
R R

R




  
       

  

 

(e.g. for R=2, F12=1/2, F21=1/4, F13=1/2, 

F23=0.34,F22=0.41) 
 

 

Hemispheres 

Concentric hemispheres 

Case View factor Plot 
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From a hemisphere of 

radius R1 to a larger 

concentric hemisphere of 

radius R2>R1, with 

RR2/R1>1. Let the 

closing planar annulus be 

surface 3. 

 

12 1
2

F


  , 13
2

F


 , 
21 2

1
1

2
F

R

 
  

 
, 

22 2

1 1
1

2
F

R

 
  

 
, 

 23 2 2

1 1
1 1

2 2 1
F

R R

  
       

, 

31 2
F

R


 , 

32 2
1F

R


   

with 

 2 21 1 1
1 2 arcsin

2
R R

R




  
       

  

Limit for R→∞ (=1/2): F12=3/4, 

F13=1/4 

 

(e.g. for R=2, F12=0.86, F21=0.21, 

F13=0.14, F31=0.09, F32=0.91, F23=0.34, 

F22=0.41) 

 

Small hemisphere frontal to large sphere 

Case View factor Plot 

From a small hemisphere 

(one face)  to a large 

frontal sphere of radius R 

at a distance HR 

between centres, with 

hH/R.  

 

12 2 2

1 1 1
1 1

2 2
F

h h

 
     

 

 

 

(e.g. for H=R, F12=3/4) 

 

Hemisphere to planar surfaces 

Case View factor Plot 

From a hemisphere of 

radius R (surface 1) to its 

base circle (surface 2). 

 

F21=1 

F12=A2F21/A1=1/2 

F11=1F12=1/2 

 

 

From a convex 

hemisphere (1) to an 

infinite plane (2). Let the 

enclosure be ‘3’. 

(coincides with Small hemisphere 

frontal to large sphere at H=R) 

F12=3/4=0.75 

F13=1/4=0.25 

F21=0, F23=1 
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From a concave 

hemisphere (1) to an 

infinite plane (2).  

 

 

 

F12= F11’ =1/2 

F11=1/2 

 

 

 

From a convex 

hemisphere of radius R1 

to a concentric equatorial 

disc extending to a radius 

R2>R1, with r=R1/R2. 

 
 

 

 

   2

12

1 1
1 arcsin

4 2
F x x r


    
 

 

with
 

2
2

21 122

2
1 1;

1

r
x r F F

r




  


  

  

(for r=0, F12=1/4; for r=1, F21=1/2)  

 

 

 

Spherical cap to base disc 

Case View factor Plot 

From a disc of radius R 

(surface 1) to a closing 

spherical cap of height H 

(surface 2), with h=H/R. 

The radius of the sphere 

is (R2+H2)/(2H). 

 

12 1F   

2
21

21 12 2 2 2

2

1
cos

1 2

A R
F F

A R H h


   

 

2
2

22 2
sin

1 2

h
F

h


 


 

 

 

(e.g. for h=1, i.e. =90º, F21=F22=1/2) 
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WITH CYLINDERS 

Cylinder to large sphere 

See results under ‘Cases with spheres’. 

Cylinder to its hemispherical closing cap 

See results under ‘Cases with spheres’. 

Very-long cylinders 

Concentric cylinders 

Case View factor Plot 

Between concentric 

infinite cylinders of radii 

R1 and R2>R1, with 

rR1/R2<1. 

 

F12=1 

F21=r 

F22=1r 

 

 

(e.g. for r=1/2, F12=1, F21=1/2, F22=1/4) 
 

Concentric cylinder to hemi-cylinder 

Case View factor Plot 

From very-long cylinder 

of radius R1 to concentric 

hemi-cylinder of radius 

R2>R1, with rR1/R2<1. 

Let the enclosure be ‘3’. 

 

F12=1/2, F21=r, F13=1/2, 

F23=1F21F22, 

 2

22

2
1 1 arcsinF r r r


     

 

(e.g. for r=1/2, F12=1/2, F21=1/2, 

F13=1/2, F23=0.22,F22=0.28) 

 

Concentric frontal hemi-cylinders 

Case View factor Plot 

From very-long hemi-

cylinder of radius R1 to 

concentric hemi-cylinder 

of radius R2>R1, with 

rR1/R2<1. Let ‘3’ be the 

closing surface (i.e. the 

two planar strips). 

 

 2

12

arccos( ) 1
1 1 1

r
F r r

r 
       

(limit for r→0: 12

1 1
0.82

2
F


   ), 

F11=0, F13=1F12, 
 

13
31

2 1

rF
F

r





, 

F33=0, F32=1F31, 
  32

23

2 1 r F
F




 , 

F21=rF12, F22=1F21F23, 

 2

22

2
1 arccos( ) 1F r r r r


      
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 (e.g. for r=1/2: 

F11=0, F12=0.90, F13=0.10, 

F21=0.45, F22=0.28, F23=0.27 

F31=0.16, F32=0.84, F33=0) 

 

 

 

Concentric opposing hemi-cylinders 

Case View factor Plot 

From very-long hemi-

cylinder of radius R1 to 

concentric hemi-cylinder 

of radius R2>R1, with 

rR1/R2<1. Let ‘3’ be the 

closing surface (i.e. the 

two planar strips). 

 

11

2
1 0.36F


   , 12

2
0.64F


  , 

13 0F  ,  

21

2r
F


 , 22

2
1 0.36F


   , 

 
23

2 1 r
F




  

F31=0, F32=1, F33=0 

 

 (e.g. for r=1/2: 

F11=0.36, F12=0.64, F13=0, 

F21=0.32, F22=0.36, F23=0.32 

F31=0, F32=1, F33=0) 

 

 

 

 

 

Hemi-cylinder to central strip 

Case View factor Plot 

From very-long hemi-

cylinder of radius R to 

symmetrically placed 

central strip of width W, 

with wW/R<2. Let the 

enclosure be ‘3’. 

 

11

2
1 0.363F


   , 12

w
F


 ,  

 13

2 w
F




 ) 

 

(e.g. for w=1, F12=F13=0.318, 

F11=0.363)  

Hemi-cylinder to infinite plane 

Case View factor Plot 

From convex hemi-

cylinder to frontal plane. 

Let the enclosure be ‘3’. 

 

11 0F   

12

1 1
0.82

2
F


    

13

1 1
0.18

2
F


    

 

 

 

 

From hemi-cylinder to Concave side:  



Radiative view factors 18 

 

 

 

plane. Let 1 be the 

concave side, 1’ the 

convex side, 1” the 

diametrical section, and 3 

the enclosure. 

 

 

11

2
1 0.36F


    

12 11"

2
0.64F F


    

13 0F   

 

Convex side: 

 

1'2

1
0.18

1

2
F


   

1'3

1 1
0.82

2
F


    

 

 

 

Equal external cylinders 

Case View factor Plot 

From a cylinder of radius 

R to an equal cylinder at 

a distance H between 

centres (it must be 

H>2R), with hH/R. 

 
Note. See the crossing-

string method, above. 

2

12

2
4 2arcsin

2

h h
hF



  

  

 

(e.g. for H=2R, F12=1/21/=0.18) 

 

Equal external hemi-cylinders 

Case View factor Plot 

From a hemi-cylinder of 

radius R to an equal 

hemi-cylinder separated 

a distance W, with rR/W 

(wW/R=1/r). Let the 

strip in between be (3). 

 

 

12

2
1

4
1 1 arccos

2 2

F

r r
r

r r





  

 
    

 

 (limit for r→∞: 12

2
1 0.36F


   ) 

13

1
1 arccos 1 2

2 1

r
F r r

r r

 
    

 

(limit for r→0: 13

1 1
0.091

4 2
F


   ) 

 

(e.g. for r=1, F12=0.11, F13=0.05) 

 

 

Planar strip to cylinder 

Case View factor Plot 
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From frontal surface of 

strip (1) of width W to a 

cylinder (2) of radius R at 

a distance H between 

centres, with vW/(2R) 

and hH/R>1. 

 
 

12

arctan
v

h
F

v

 
 
 

  

 
21

arctan
arctan

v

xh
F

 

 
 
 

  with 

xv/h=(W/2)/H 

 

(e.g. for W=R=H, i.e. v=1/2, h=1, 

x=1/2, F12=0.927, F21=0.148) 

 

 
From frontal surface of 

off-centre strip of width 

W to a cylinder of radius 

R at a distance H to the 

strip plane. The solution 

is the composition of a 

strip of with W1 and a 

strip of width W2, with 

v1W1/R, v2W2/R, 

hH/R>1, x1W1/H, 

x2W2/H.  

 
 

For W=W2W1: 

   2 1

12

2 1

arctan arctanx x
F

v v






2 1

21

arctan arctan

2

v v

h h
F



   
   

   
  

For W=W2W1: 

   2 1

12

2 1

arctan arctanx x
F

v v






2 1

21

arctan arctan

2

v v

h h
F



   
   

   
  

(e.g. for W1=0 & W2=R=H, i.e. 

v1=0, v2=1, h=1, x1=0, x2=1, 

F12=0.463, F21=0.074) 

For W1=0 & W=W2 (with xW/H): 

 

Wire to parallel cylinder  

Case View factor Plot 

From a small infinite 

long cylinder to an 

infinite long parallel 

cylinder of radius R, with 

a distance H between 

axes, with hH/R. 

 

12

1
arcsin

hF


  

 

(e.g. for H=R, F12=1/2) 
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Finite cylinders 

Base to lateral surface 

Case View factor Plot 

From base (1) to lateral 

surface (2) in a cylinder 

of radius R and height H, 

with rR/H. 

Let (3) be the opposite 

base. 

 

12
2

F
r


 , 13 1

2
F

r


  , 

21
4

F


 , 22 1
2

F


  , 23
4

F


  

 

with 
24 1 1r

r


 
  

 

(e.g. for R=H, F12=0.62, F21=0.31, 

F13=0.38, F22=0.38) 

 

Disc to coaxial cylinder  

Case View factor Plot 

From disc (1) of radius 

R1 at a distance H1, to 

internal lateral surface 

(2) of a coaxial cylinder 

of radius R2>R1 and 

height H2H1, with 

h1H1/R1, h2H2/R1, 

rR2/R1. 

 

   12 1 2 1 2

1

2
F x x y y        

with  
2 2 2 2

1 1 1 1

2 2 2 2

2 2 2 2

1 , 4

1 , 4

x r h y x r

x r h y x r

    

    
 

 

(e.g. for H1=0 & H2=R2=R1,  

i.e. for r=1, h1=0 & h2=1,  

F12=0.62) 

Disc of same radius (i.e. R2=R1 and r=1) 

 
Disc at the base (i.e. H1=0, with h=h2) 

 

Equal finite concentric cylinders 

Case View factor Plot 

Between finite concentric 

cylinders of radius R1 

and R2>R1 and height H, 

with h=H/R1 and 

R=R2/R1. Let the 

enclosure be ‘3’. For the 

inside of ‘1’, see 

previous case. 

2 4
12

1

1
1 arccos

2

f f
F

f h

 
   

 
, 

13 121F F  ,

2

7
22

1 2 2 1
1 arctan

2

hfR
F

R R h R 


    , 

23 21 221F F F    

with 2 2

1 1f h R   , 2 2

2 1f h R   ,

 
2 2

3 1 2 4f f R   ,

2 1
4 3 2

1

1
arccos arcsin

2

f f
f f f

Rf R


   ,
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2

5 2

4
1

R
f

h
  ,

 

2

6 2 2 2

2
1

4 4

h
f

R h R
 

 
, 

 7 5 6 52

1
arcsin arcsin 1 1

2
f f f f

R

 
     

 

 

(e.g. for R2=2R1 and H=2R1, F12=0.64, 

F21=0.34, F13=0.33, F23=0.43, F22=0.23) 
 

 

Outer surface of cylinder to annular disc joining the base  

Case View factor Plot 

From external lateral 

surface (1) of a cylinder 

of radius R1 and height 

H, to annular disc of 

radius R2, with rR1/R2, 

hH/R2. 

 

  
12

arcsin

8 4

1
arccos

2

z x ry
F

rh rh

x

y






 

 
  

 

, 

 

with 2 2 1x h r   , 2 2 1y h r   , 

 
2 22 4 arccos

xr
z x r

y

 
    

 
 

 

(e.g. for R2=2R1=2H, i.e. r=h=1/2, 

F12=0.268, F21=0.178) 

 

 

Cylindrical rod to coaxial disc at one end  

Case View factor Plot 

Thin rod (1) of height H, 

to concentric disc (2) of 

radius R placed at one 

end, with hH/R. 

 

2

12 2

1 1 1
arcsin

4 2 1

h
F

h


 


, 

 

 

(e.g. for R=H, i.e. h=1, F12=1/4) 
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WITH PLATES AND DISCS 

Parallel configurations 

Patch to disc 

Case View factor Plot 

From a patch to a parallel 

and concentric disc of 

radius R at distance H, 

with h=H/R. 

 

12 2

1

1
F

h



 

 

(e.g. for h=1, F12=0.5) 

 

Patch to annulus 

Case View factor Plot 

From a patch to a parallel 

and concentric annulus of 

inner radius R1 and outer 

radius R2, at distance H, 

with r1=R1/H and 

r2=R2/H. 

 

2 2

2 1
12 2 2

2 11 1

r r
F

r r
 

 
  

 

(e.g. for r1=1 and r2=2, F12=0.30) 

 

 

Patch to rectangular plate 

Case View factor Plot 

From small planar patch 

pointing to a corner of a 

rectangular plate of sides 

H and W at a separation 

L, with h=H/L and 

w=W/L. 

 

12

1
arctan arctan

2 ' ' ' '

h w w h
F

h h w w

 
  

 

 

with 
2' 1w w   and 

2' 1h h   

 

(e.g. for W=H=L, F12=0.139) 
 

Equal square plates 

Case View factor Plot 
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Between two identical 

parallel square plates of 

side L and separation H, 

with w=W/H. 

 

4

12 2 2

1
ln 4

1 2

x
F wy

w w

 
  

 
 

with 
21x w   and 

arctan arctan
w

y x w
x

   

 

(e.g. for W=H, F12=0.1998)  

Equal rectangular plates 

Case View factor Plot 

Between parallel equal 

rectangular plates of size 

W1·W2 separated a 

distance H, with x=W1/H 

and y=W2/H. 

 

 

2 2

1 1
12 2 2

1 1

1

1

1

1

1
ln

1

2 arctan arctan

2 arctan arctan

x y
F

xy x y

x
x y x

y

y
y x y

x




 

 

 
  

 

 
   

 

 

with 
2

1 1x x   and 
2

1 1y y   

 

(e.g. for x=y=1, F12=0.1998) 

 

Rectangle to rectangle 

Case View factor Plot 

From rectangle A1 in 

parallel plane to 

rectangle A2. 

 

 
   

2 2 2 2

12
1 1 1 11

, , ,
2

1
1

i j k l

i j k l
l k j i

x y
A

F B  


  

   

 
  

    

with   1 2 1 2 1A x x y y     

 
2

2 2 2arctan arctan ln
2

v u z
B vp uq u v z

p q

   
       

   
 

u x   , v y   , 2 2p u z  , 2 2q v z    

 

(e.g. for frontal squares in a cube: 

x1=1=0, x2=2=1, y1=1=0, y2=2=1, z=1, F12=0.1998) 

 

Unequal coaxial square plates 

Case View factor Plot 
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From a square plate of 

side W1 to a coaxial 

square plate of side W2 at 

separation H, with 

w1=W1/H and w2=W2/H. 

 

12 2

1

1
ln

p
F s t

w q

 
   

 
, with 

 

  

2
2 2

1 2

2 2

2 1 2 1

2 2
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2 2

,

arctan arctan
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4, 4

p w w

q x y

x w w y w w

x y
s u x y

u u

x y
t v x y

v v

u x v y

   

   

    

     
  


      


   

 

 

(e.g. for W1=W2=H, F12=0.1998) 

 

Box inside concentric box 

Case View factor Plot 

Between all faces in the 

enclosure formed by the 

internal side of a cube 

box (faces 1-2-3-4-5-6), 

and the external side of a 

concentric cubic box 

(faces (7-8-9-10-11-12) 

of size ratio a1. 

 
 

(A generic outer-box face 

#1, and its corresponding 

face #7 in the inner box, 

have been chosen.) 

From an external-box face: 

11 12 13 14

2

15 16 17 18

19 1,10 1,11 1,12

0, , , ,

, , , ,

0, , ,

F F x F y F x

F x F x F za F r

F F r F r F r

   


   
    

 

From an internal-box face: 

   

   

71 72 73 74

75 76 77 78

79 7,10 7,11 7,12

, 1 4, 0, 1 4,

1 4, 1 4, 0, 0,
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F z F z F F z

F z F z F F

F F F F

     


     


   

with z given by:

  
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      
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  

 
  

   
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  
   

 


 
  

 

 

and: 

From face 1 to the others: 

 

 

From face 7 to the others: 
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 

 

 

2

2

1 4

0.2 1

1 4 4

r a z

y a

x y za r

  





   

 

 (e.g. for a=0.5, F11=0, F12=0.16, F13=0.10, 

F14=0.16, F15=0.16, F16=0.16, F17=0.20, 

F18=0.01, F19=0, F1,10=0.01, F1,11=0.01, 

F1,12=0.01), and (F71=0.79, F72=0.05, F73=0, 

F74=0.05, F75=0.05, F76=0.05, F77=0, F78=0, 

F79=0, F7,10=0, F7,11=0, F7,12=0). 

Notice that a simple interpolation is proposed 

for y≡F13 because no analytical solution has 

been found. 

Equal discs 

Case View factor Plot 

Between two identical 

coaxial discs of radius R 

and separation H, with 

r=R/H. 

 

2

12 2

1 4 1
1

2

r
F

r

 
   

 

(e.g. for r=1, F12=0.382) 

 

Unequal discs 

Case View factor Plot 

From a disc of radius R1 

to a coaxial parallel disc 

of radius R2 at separation 

H, with r1=R1/H and 

r2=R2/H. 

 

12
2

x y
F


  

with 2 2 2

1 2 11 1x r r r    and 

2 2 2

2 14y x r r   

 

(e.g. for r1=r2=1, F12=0.382) 

 

Patch to infinite plate 

Case View factor Plot 
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From a finite planar plate 

at a distance H to an 

infinite plane, tilted an 

angle . 

 

Front side: 12

1 cos

2
F


  

Back side: 12

1 cos

2
F


  

 

(e.g. for  =/4 (45º), 

F12,front=0.854, F12,back=0.146)  

Perpendicular configurations 

Patch to rectangular plate 

Case View factor Plot 

From small planar patch 

at 90º to rectangular plate 

of sides H and W at a 

separation L, with 

h=H/W and ℓ=L/W. 

 

12

1 1 1
arctan arctan

2
F

z z

 
  

 
 

with 
2 2z h   

 

(e.g. for W=H=L, F12=0.124) 

 

 

Square plate to rectangular plate  

Case View factor Plot 

From a square plate of 

with W to an adjacent 

rectangles at 90º, of 

height H, with h=H/W. 
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F h h h
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with 
2

1 1h h   and 
 

4

1
2 2 22

h
h

h h



 

 

(e.g. for h=→∞, F12=→1/4,  

for h=1, F12=0.20004,  

for h=1/2, F12=0.146) 
 

 

Rectangular plate to equal rectangular plate  

Case View factor Plot 

Between adjacent equal 

rectangles at 90º, of 

height H and width L, 

with h=H/L. 
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with  2

1 2 1h h   and 

22 1
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1

1
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h
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

 
  
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(e.g. for h=1, F12=0.20004) 
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Rectangular plate to unequal rectangular plate  

Case View factor Plot 

From a horizontal 

rectangle of W·L to 

adjacent vertical 

rectangle of H·L, with 

h=H/L and w=W/L. 
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(e.g. for h=w=1, F12=0.20004) 

 

From non-adjacent 

rectangles, the solution 

can be found with view-

factor algebra as shown 

here 

 

2 2' 2'
1 2 1 2 2' 1 2' 2 2' 1 2' 1

1 1

A A
F F F F F

A A


            

   2 2' 2'
2 2' 1 1' 2 2' 1' 2' 1 1' 2' 1'

1 1

A A
F F F F

A A


          

 

 

Rectangle to rectangle 

Case View factor Plot 

From rectangle A1 at 90º 

to rectangle A2 (mind it is 

singular if x1=1=0). 
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with   1 2 1 2 1A x x y y     
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 
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 y

D
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
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(e.g. for squares touching: 

x1=1=10-6, x2=2=1, y1=1=0, y2=2=1, F12=0.20004) 

 

 

Cylindrical rod to coaxial disc at one end  

(See it under ‘Cylinders’.) 

Strip to strip configurations 

Note. See the crossing-string method (above) for these and more general two-dimensional geometries. 

Equal parallel strips 

Case View factor Plot 
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Between two identical 

parallel strips of width W 

and separation H, with 

h=H/W. 

 

2

12 1F h h    

 

(e.g. for h=1, F12=0.414) 

 

Equal adjacent strips 

Case View factor Plot 

Adjacent equal long 

strips at an angle . 

 

12 1 sin
2

F
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(e.g. 12
2

2
1 0.293

2
F     ) 

 

Unequal parallel strips 

Case View factor Plot 

Between two unequal 

parallel strips of width 

W1 and W2, and 

separation H, with 

w1=W1/H and w2=W2/H. 
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(e.g. for w1=w2=1, F12=0.414) 
 

Unequal normal adjacent strips 

Case View factor Plot 

Adjacent long strips at 

90º, the first (1) of width 

W and the second (2) of 

width H, with h=H/W. 
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(e.g. 
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2
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2H W
F


   ) 

 

Sides of a triangular prism 

Case View factor Plot 

Between two sides, 1 and 

2, of an infinite long 

triangular prism of sides 

L1, L2 and L3 , with 

h=L2/L1 and  the angle 

between sides 1 and 2. 
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(e.g. for h=1 and =/2, F12=0.293) 
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NUMERICAL COMPUTATION 

Several numerical methods may be applied to compute view factors, i.e. to perform the integration 

implied in (2) from the general expression (1). Perhaps the simpler to program is the random estimation 

(Monte Carlo method), where the integrand in (2) is evaluated at N random quadruples, (ci1, ci2, ci3, ci4) 

for i=1..N, where a coordinates pair (e.g. ci1, ci2) refer to a point in one of the surfaces, and the other pair 

(ci3, ci4) to a point in the other surface. The view factor F12 from surface A1 to surface A2 is approximated 

by: 

 

 2 1 2
12 2

1 12

cos cosN

i i

A
F

N r

 



   (11) 

 

where the argument in the sum is evaluated at each ray i of coordinates (ci1, ci2, ci3, ci4). 

 

Example 4. Compute the view factor from vertical rectangle of height H=0.1 m and depth L=0.8 m, 

towards an adjacent horizontal rectangle of W=0.4 m width and the same depth. Use the Monte 

Carlo method, and compare with the analytical result. 

Sol. The analytical result is obtained from the compilation above for the case of ‘With plates and 

discs / Perpendicular configurations / Rectangular plate to unequal rectangular plate’, obtaining, 

for h=H/L=0.1/0.8=0.125 and w=W/L=0.4/0.8=0.5 the analytical value F12=0.4014 (mind that 

we want the view factor from the vertical to the horizontal plate, and what is compiled is the 

opposite, so that a reciprocity relation is to be applied). 

 For the numerical computation, we start by setting the argument of the sum in (11) explicitly in 

terms of the coordinates (ci1, ci2, ci3, ci4) to be used; in our case, Cartesian coordinates (xi, yi, zi, 

y’i) such that (xi, yi) define a point in surface 1, and (zi, y’i) a point in surface 2. With that choice, 

cos1=z/r12, cos2=x/r12, and  
22 2

12 2 1r x z y y    , so that:  
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      

where fi is the value of the function at a random quadruple (xi, yi, zi, y’i). A Matlab coding may be: 

 W=0.4; L=0.8; H=0.1; N=1024;                                          %Data, and number of rays to be used 

 f= @(z,y1,x,y2) (1/pi)*x.*z./(x.^2+z.^2+(y2-y1).^2).^2;   %Defines the function 

 for i=1:N fi(i)=f(rand*H, rand*L, rand*W, rand*L);end;   %Computes its values 

 F12=(W*L/N)*sum(fi)                                                         %View factor estimation 

 

Running this code three times (it takes about 0.01 s in a PC, for N=1024), one may obtain for F12 the three 

values 0.36, 0.42, and 0.70, but increasing N increases accuracy, as shown in Fig. E4.  
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Fig. E4 Geometry for this example (with notation used), and results of the F12-computation with a number 

N=2in of random quadruplets (e.g. N=210=1024 for in=10); three runs are plotted, with the mean in 

black. 

REFERENCES 

Howell, J.R., “A catalog of radiation configuration factors”, McGraw-Hill, 1982. (web.) 

Siegel, R., Howell, J.R., Thermal Radiation Heat Transfer, Taylor & Francis, 2002. 

 

Back to Spacecraft Thermal Control 

 

http://www.thermalradiation.net/tablecon.html
http://imartinez.etsiae.upm.es/~isidoro/tc3/Spacecraft%20Thermal%20Control.pdf

