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HEAT AND MASS CONVECTION 

We present here some basic modelling of convective process in Heat and mass transfer. Heat diffusion, 

mass diffusion, and heat radiation are presented separately. Furthermore, mass convection is only treated 

here as a spin-off of the heat convection analysis that takes the central focus.  

Heat convection: what it is 

There cannot be any convected heat, since heat is only defined as thermal-energy flow through an 

impermeable surface due to a temperature difference across. What we call heat convection is the effect of 

a fluid flow on heat conduction at a fluid-washed wall; i.e. we intend to apply Newton's law of cooling 

instead of Fourier's law (see Physical transport phenomena in Heat and mass transfer):  

 

 What is heat (flux) convection?      nq h T T k T      (1) 

 

(where n stands for the normal gradient at the wall), aiming at substituting the effect of a real flow field 

by an empirical boundary condition at the wall, i.e. with the convective coefficient h in (1) found from 

global measurements of temperatures and heat fluxes in experiments, instead of by analytically solving 

the fluid flow (Navier-Stokes' equations) and using (1) to deduce h. Internal thermal energy (not heat) is 

convected with the fluid flow, in an amount dependent on a reference energy-level (reference 

temperature), usually referred to the ambient or sink temperature. When the increase in internal thermal 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20conduction.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Mass%20Transfer.pdf
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energy is due to heat transfer at a source, the energy balance for a fluid flow at constant pressure without 

phase changes and reactions is Q mc T  , what shows that, the same thermal load can be transported by 

a high mass-flow-rate flow with small temperature jump, or by a low mass-flow-rate flow with high 

temperature jump, and that thermal-carrier fluids should have high thermal capacity. 

 

Notice that in Fluid Mechanics, there is no Newton's law of cooling, and the only heat-transfer term to be 

included is Fourier's conduction (and in very special cases thermal radiation emission or absorption 

through the media). 

Types of heat convection  

Heat convection problems may be classified according to: 

 Time variation, as steady or unsteady convection. Only a marginal fraction of applications require 

transient convection analysis (e.g. when the onset of natural convection in a fluid layer heated 

from below, is studied). 

 Flow origin, as forced convection or natural convection. Forced convection occurs when the fluid 

flow is imposed by other agent than the heat-transfer phenomena under study, i.e. by a pump, a 

fan, or natural convection from other objects. Natural or free convection occurs when the fluid 

flow appears as a consequence of the heat-transfer phenomena under study, due to buoyancy 

forces caused by density gradients in an external force field. Natural convection takes place in all 

heat convection problems under gravity, but when forced convection is imposed, the latter usually 

overcomes the former (a combination of the two must be considered at small forcing speeds). 

Forced convection greatly enhances heat transfer, but demands power consumption. (According to 

this division, the internal flow in a heat-pipe, due to capillary pumping, is forced, in spite of not 

consuming external power. Thermo-capillary convection, like Marangoni convection, is also not 

considered in these notes.) 

 Flow regime, as laminar flow or turbulent flow. Turbulent flow is the rule in engineering 

applications, but laminar flow always exists in some regions, like close to walls and entrance 

regions. Turbulent convection greatly enhances heat transfer, but increases power consumption 

too. 

 Flow topology, as internal flow or external flow. Internal flow is when we focus on the fluid 

flowing inside pipes and ducts, whereas external flow is when we focus on the fluid flowing 

outside pipes and ducts, or around any other solid object. The distinction is not so clear when one 

considers a portion of a duct (e.g. a flat plate), or open-channel flow, although all these cases are 

traditionally considered external flow. Some other times, flow topology depends on the detail of 

the analysis, as in shell-and-tube heat exchanger, when heat transfer can be considered external 

convection of the shell-fluid around the tubes, or internal convection of a shell-ducted flow to the 

walls (mainly the internal walls), as for compact plates heat exchangers. 

 Flow phases, as single-phase or multi-phase flows. An intermediate type is stratified flow (i.e., 

homogeneous, heterogeneous: stratified, two bulk phases, and disperse). This division is not only 

important for permanent multi-phase flow, but for vaporising and condensing flows. 
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 Flow detail, as detailed heat convection or global heat convection. Most of the times, the empirical 

approach to convection heat transfer only looks for global values of the convective coefficient 

around a solid, or along a pipe; but there are cases where temperature variations along the wall 

must be resolved, either during experiments to compute global h-values by integration, or during 

analysis to know if some temperature limit is locally exceeded, and for this purpose a local 

approach is of interest. 

 Flow compressibility is seldom important in heat convection. Flow reactivity, if any, is considered 

aside as a distributed energy source or sink. Other important fluid flow divisions, like viscous and 

inviscid flows, or 1D- 2D- and 3D- flows, are of little importance in the study of heat transfer by 

convection, because of the global empirical approach followed. 

 Thermal boundary regulation. Two basic cases are considered: constant wall temperature, and 

constant heat flux, the former being more closely approached in practice (it is simpler to regulate 

the temperature of the wall than the heat flux through it, and there temperature is maintained in 

phase changes of a pure substance), but the latter being simplest to model, since it means a 

constant source term in the energy balance (and it is the actual case in counter-flow heat 

exchangers with similar fluid flows). As a matter of fact, both types of control can be 

advantageously used, as in hot-wire velocimetry (or hot-wire anemometry), where either the wire 

temperature is controlled (regulating its electrical resistance R(T) and measuring the required 

power as a function of flow speed, Q ), or the supplied power to the wire is fixed, and the steady-

state temperature difference between wire and fluid measured. The steady-state energy balance, 
2

w( )Q V R KA T T   , allows a calibration against relative flow speed, v, when a cooling law is 

assumed (e.g. K a b v  ). 

 

Air is the most ubiquitous fluid in heat convection. All terrestrial animals and most equipment transfer 

heat to the environment by natural convection in air, with a typical convection coefficient value in the 

range h=5..10 W/(m2·K). For simple cooling/heating load calculations with wind effects, Duffie and 

Beckmann (1991) rule h=a+bvwind, with a=3 W/(m2·K) and b=3 J/(m3·K) may be a first approximation. 

Notice that the convective coefficient depends on fluid type, flow type, and geometry. For instance, for 

natural convection from a plate in air, correlations for h in (1) are (see details in Forced and natural 

convection) h=a(TT)1/4, with a=2.4 W/(m2·K5/4) for the upper face of a horizontal surface, a=1.3 

W/(m2·K5/4) for the lower face of a horizontal surface (stable vertical gradient), and a=1.8 W/(m2·K5/4) 

for a vertical surface.    

A brief on Fluid Mechanics 

Fluid Physics encompasses the nature of fluids (their structure and properties), the fluid forces within and 

on the boundaries, the transport of mass, momentum and energy, and possible effects of reactive 

processes, electromagnetic interactions, and so on; Fluid Mechanics concentrates on fluid forces and the 

transport of momentum. Our interest here is on the transport of energy, but this is linked to the transport 

of momentum and cannot be studied apart when fluid flow exists; that is why we are presenting below an 

ad hoc summary of the general equations, a rather complicated formulation with the three simple 

objectives: 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Forced%20and%20natural%20convection.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Forced%20and%20natural%20convection.pdf
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 To have an overview of the full equations which are pre-programmed in computational-fluid-

dynamic codes (as commercial CFD packages). The user is in charge of selecting the appropriate 

terms in the equations, and setting the initial and boundary conditions, but the equations are 

automatically solved. 

 To have an idea of the terms retained and the terms neglected in some simple heat-and-mass 

transfer problems to be analysed in detail, as the boundary-layer flow, and the pipe flow. 

 To better understand the rational for the grouping of dimensional variables into the traditional 

non-dimensional parameters. 

 

The description of fluid flow makes use of the continuum model, and on the concept of fluid particle, an 

infinitesimal control system in local thermodynamic equilibrium. Once a reference frame is selected, the 

motion of fluid particles may be described in two ways: 

 Eulerian description, where the unit volume is fixed to the spatial reference frame, and the motion of 

the particle that at every instant happens to pass by this position, is specified. 

 Lagrangian description, where the unit volume moves with the flow relative to the spatial reference 

frame, and the motion of the same particle at each position, is specified. 

 

Passing from the most-intuitive Lagrangian to the most-used Eulerian description is based on Reynolds 

transport theorem: 

 

  CV

CV

CM CV 0 CV 0 CV CV

( )CM

( ) ( ) ( )

V f t

A

V t V t t A t t V A

d d
dV dV v v ndA dV v ndA

dt dt t t

  
  

 



 

            (2) 

 

which says that, for of any conservative property ( may be mass, momentum, or energy) in a control 

mass CM (its value being the integral of the specific function over the volume; e.g.  would be mass per 

unit volume, ), the variation with time in a permeable system can be computed as the integral of the 

specific function within the control volume CV, plus the flux of that variable over the permeable area. 

 

Passing from area integrals to volume integral is based on Gauss-Ostrogradski’s divergence theorem: 

 

  
CV CV

CV CV CV

CM 0
V A

vdV v ndA

V A V

d
dV v ndA v dV

dt t t

  
 

 

   
 

      
 

    (3) 

 

which is applied to an infinitesimal volume to get the general equations of Fluid Mechanics: continuity 

equation, momentum equation, and energy equation. 

Continuity equation 

The continuity equation is the mass balance (dmCM/dt=0) for a dV system; with = we get from (3): 

  

   0v
t





  ,   or   

D
0

D
v

t


    (4) 
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where the convective derivative D() / D () / ()t t v     is often introduced to make the writing more 

compact. In most heat and mass transfer problems, the continuity equation can be reduced to 0v   

because density changes are usually negligible.  

Momentum equation 

The momentum equation is the linear-momentum balance (  
CM

/ V Ad mv dt F F F   ), applied to a dV 

system; with v  we get from (3), using the convective derivative: 

  

 
 

   
D

'
D

vv
vv g p gz

t t

 
     


         (5) 

 

where   is the stress tensor (such that the force per unit area of normal vector n  is f n  ), g  is any 

volumetric force field (e.g. gravity), p is fluid pressure (one third of the trace of the stress tensor), and '  

the viscous component of the stress tensor. In most heat and mass transfer problems (5) can be reduced to 

the so-called Boussinesq approximation (constant-density flow except for the buoyancy term, 

proportional to the thermal-expansion coefficient , named in honour of the French Academician V. J. 

Boussinesq, who studied in the late 19th c. convective cooling and turbulence): 

  

   2

0

D
1

D
z

v p
g T T i v

t
 




          (5a) 

 

where ≡/ is the kinematic viscosity and  the dynamic viscosity. 

Energy equation 

The energy equation is the energy balance (  
CM

/d me dt Q W  ) for a dV system; with =e we get 

from (3): 

  

  
D

D

e
q v

t
      (6) 

 

which in most heat and mass transfer problems is expressed in terms of temperature: 

  

 
D

/ ' :
D

p

T
c q TDp Dt v

t
        (6a) 

 

Most of the times energy terms other than the accumulation cpDT/Dt and the heat flux q  terms, are 

grouped under a dissipation variable  (energy release per unit volume), as seen in Heat and Mass 

Transfer. 

Mass transport equation 

The (global) mass-transport equation is the continuity equation above; what we deal with here is the 

species-balance equation in a mixture, (dmi,CM/dt=Wi, for any species i, with Wi being a possible i-species 

production term by chemical reactions), for a dV system. Now, besides substituting =≡mi/V in (3), one 

has to use in (3) the i-species own velocity, iv , related to the mass-averaged velocity v  by the 

conservation equation i iv v  , and the definition of diffusion velocity di iv v v  , what yields: 

  



Heat and mass convection. Boundary layer flow page 6 

        d
i i i

i i i i i i iv w v v v j
t t t

  
   

  
         (7) 

 

where 
di i ij v  is the flux density of species i through a (global) fluid particle. With the convective 

derivative: 

  

 
D

D

i
i i iv w j

t


     (7a) 

  

wi being a possible i-species production term per unit volume. 

Constitutive equations 

To solve a Fluid Mechanics problem, i.e. to find the velocity field, pressure field and temperature field 

 , ,v p T  in terms of position and time  ,x t , besides the initial and boundary conditions of the particular 

problem at hand, the above balance equations of mass, momentum, and energy, must be supplemented 

with some general constitutive equations that relate the additional variables  , , , , , ,i ie q j w    to the 

main variables  , ,v p T , i.e. the equation of state at equilibrium, =(T,p) and e=e(T,p), and the main one 

in Fluid Mechanics, a relation between fluid strain-rate and stress, first proposed by Newton in 1687 as, 

/v y     , and in a more general way named Navier-Poisson's law: 

  

     
2 2

' 2 ( )
3 3

T

V VpI pI v I pI v v v I       
   

                    
   

 (8) 

 

which enters into the momentum balance as: 

  

    
0

2 22
'

3
Vp p v v v p v



      
  

                    
 

 (8a) 

 

Besides state equations and the strain-rate to stress relation, one needs a heat-rate relation (our well-

known Fourier's law, q k T  , or its extension to multi-component-diffusing systems, 

di i iq k T v h    , with the enthalpy of species i, hi, being deduced from the state equations adopted), 

plus appropriate dissipation laws for , plus the mass diffusion rate equations, namely the extended Fick's 

law and Arrhenius's law: 

  

  /i i i Sj D c T      (9) 

 w M
M

B
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RT
i i i i

i

i

a
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i
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 




 (10) 

 

where Di is the coefficient of mass diffusion of species i in a given mixture due to concentration 

gradients, cS is the Soret coefficient of mass diffusion due to thermal gradients (usually negligible), wi is 

the mass of species i produced (by unit time and volume of mixture) due to chemical reactions, i'' and i' 

the stoichiometric coefficients for the forward and backward reaction considered (one wi must be 

considered for each reactions), and Ba and Ea two empirical Arrhenius coefficients. The kinetic theory of 

gases provides a simple (although sometimes not very accurate) formulation of all the transport 
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coefficients and equations of state in terms of pressure, temperature and composition, but in practice one 

usually resorts to tabulated experimental data. As no reaction is to be considered here, and Soret effects 

are neglected, the only term entering into the mass-diffusion balance is: 

  

 2

i i ij D      (11) 

 

In summary, substituting these constitutive relations in the balance equations, the partial differential 

equations that solve a heat and mass transfer problem, with fluid flow but nearly constant density, are: 

  

 Mass balance (continuity): 0v   (12) 

 Species balance: 
2D

D

i i
i i

y w
D y

t 
    (13) 

 Momentum balance:   2

0

D
1

D
z

v p
g T T i v

t
 




          (14) 

 Energy balance: 
2D

D p

T
a T

t c




    (15) 

 

where /i iy    is the mass fraction of species i in the mixture. Notice that the i-species diffusivity in the 

mixture, Di, the momentum diffusivity (kinematic viscosity) , and thermal diffusivity, a=k/(cp), all have 

dimensions of square length divided by time. Finally recall the definition of the convective derivative. 

D() / D () / ()t t v    , which reduces to D() / D ()t v   in the steady-state case. 

Introduction to non-dimensional parameters 

In all fields of physical sciences, but particularly in Fluid Mechanics, and above all in Heat and Mass 

Transfer, there is such a number of parameters interplaying in each problem, that it is most convenient for 

us to group them if possible, and there is a general principle applicable for that, namely, the Pi-

Buckingham Theorem (ASME, 1915), which states that a physical equation with N variables whose 

magnitudes can be expressed in terms of M independent physical units, is equivalent to a non-dimensional 

physical equation with NM non-dimensional variables. 

 

Before attempting that grouping, however, some remarks are appropriate. Firstly, the number of 

independent physical units, M, is not a universal invariant but a universal agreement, and the metre-unit 

(m) could be totally skipped if lengths were measured with the second-unit (s) and the universal law for 

the speed of light in vacuum c=1 assumed, instead of giving dimensions to this universal invariant, 

c=3·108 m/s. Secondly, and most important, if working with non-dimensional variables is so 

advantageous, why most physical subjects are learnt using dimensional magnitudes? The answer is that 

we, humans, want to compare every magnitude with our own measurements: lengths with the length of 

our arm span, masses with the mass of a stone we can throw, times with our heart period, and so on, and 

each of our anthropocentric units we introduce, contributes to one of the M-basic magnitudes mentioned 

above (seven in the SI: m, kg, s, K, A, cd, and mol). 
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For the grouping of dimensional variables to get non-dimensional parameters, one may follow an ad hoc 

approach. For instance, in thermal convection studies, one may reason that the convective coefficient h 

must be a function of the fluid properties (k,,cp,), and the characteristic fluid-velocity gradient v/L, i.e. 

h=h(k,,cp,,v/L), and say that the combinations /Nu hL k , /Re vL  , and /pPr c k , are 'the 

usual choice', or 'the standard rule', but someone might ask why not another combination, and if there is a 

rational behind. Adding that the rational is to compare heat convected (hT) against heat conducted if the 

fluid was quiescent (kT/L), to compare change of momentum ((v)v) against viscous stress ((v/L)), and 

to compare momentum diffusivity (≡/) against thermal diffusivity (a=k/(cp)), may seem enough 

justification already. But the most conclusive explanation of why those parameters and their meaning, 

comes from an order-of-magnitude analysis of the general equations presented above, both the balance 

equations and the boundary conditions, namely: 

 

Thermal boundary condition at a wall. From the definition of heat convection coefficient: 

  

   n

T hL
q h T T k T h T k Nu

L k



           (16) 

 

what teaches that a non-dimensional parameter, Nu, can be defined to measure the ratio of heat flux 

transferred with convection to that without convection; it is named Nusselt number in honour of the great 

thermal engineer Wilhelm Nusselt, who introduced it in his 1915 pioneering article "The Basic Laws of 

Heat"; the 'number' ending is the traditional designation of non-dimensional parameters (no physical 

units, just the number). In spite of heat convection being always greater than a corresponding heat 

conduction, Nu may be smaller than unity if one choose for it a length smaller than the boundary-layer 

thickness (e.g. when using the diameter for fine wires). 

 

Mass balance. From the continuity equation: 

 

 0 0
yx

x y

vv
v

L L
      (17) 

 

what teaches that, if there is a change of fluid speed along one direction (vx/Lx), it must be a balancing 

change of fluid speed along another direction (the flow must be at least two-dimensional); i.e., in a one-

dimensional flow (in Cartesian coordinates), the speed cannot change along a streamline (v/x=0). 

Notice that the fact that the two velocity-gradients be of equal magnitude does not mean that the 

longitudinal flow must be of the same order as the transversal flow, the paradigmatic case being the 

boundary-layer flow to be analysed below, where the longitudinal flow vx is dominant, i.e. vy<<vx, but still 

vy/y=vx/x. 

 

Momentum balance. From the longitudinal momentum equation, assuming gravity effects irrelevant, and 

expanding the convective derivative: 
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

(18) 

 

which can be interpreted in the following way. At least two terms in (18) must be of the same order of 

magnitude; it is important then to compare each other, and for that purpose several non-dimensional ratios 

are defined: the Strouhal number to measure the ratio of convective forces per unit volume (v2/L) to 

inertia forces per unit volume (v/t), the Reynolds number to measure the ratio of convective forces per 

unit volume (v2/L) to viscous forces per unit volume (v/L2), and so on. 

 

Several other non-dimensional parameters are used in heat and mass transfer, as the ratio of momentum 

diffusivity to thermal diffusivity, named Prandtl number Pr=/a, the ratio of momentum diffusivity to 

species diffusivity, named Schmidt number Sc=/Di, and so on, all of which will be introduced at due 

time (Tables 1 and 2 give a compilation), but now we turn to the details of fluid flow. 

 

Table 1. Main non-dimensional parameters in convective heat transfer. 

Parameter Definition Meaning 

Nusselt number 
hL

Nu
k

  Ratio of convective heat flux to conductive heat flux. 

Prandtl number Pr
a


  

Ratio of momentum diffusivity to thermal diffusivity. 

Also, thickness ratio between velocity-boundary-layer 

and thermal-boundary-layer. 

Reynolds number 
vL

Re


  Ratio of flow convection-inertia stress to viscous stress. 

Grashof number 
3

2

g TL
Gr






  Ratio of fluid-buoyancy stress to viscous stress. 

Rayleigh number 
3

Pr
g TL

Ra Gr
a






   

Ratio of fluid-buoyancy stress to viscous and thermal 

stresses. 

Peclet number 
vL

Pe RePr
a

   Ratio of flow convection-inertia stress to viscous and 

thermal stresses. 

Stanton number 
h Nu

St
vc Re Pr

   Ratio of heat convection to flow thermal capacity. 

Strouhal number 
L

Sr
v


  Ratio of flow convection-inertia stress to viscous stress. 

 

Table 2. Main non-dimensional parameters in convective mass transfer. 

Parameter Definition Meaning 

Sherwood number 
m

i

h L
Sh

D
  

Ratio of convective mass flux,  , ,i m i w im A h     , to diffusive 

mass flux, i i im A D   . Notice that if the convection term is 

written as  , ,i m i w im A h y y    (i.e. including the density in the 

convective coefficient), then  m iSh h L D . 

Smidth number 
i

Sc
D


  

Ratio of momentum diffusivity to solutal diffusivity. 

Also, thickness ratio between velocity-boundary-layer and solutal-

boundary-layer. 
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Lewis number 
i

a Sc
Le

D Pr
   

Ratio of momentum diffusivity to thermal diffusivity. 

Also, thickness ratio between velocity-boundary-layer and thermal-

boundary-layer. 

 

We focus now on the fluid-mechanics near walls, and will follow on with the analysis of thermal and 

solutal effects there, but the theory of boundary layers can be applied to other interesting cases like 

mixing layers, where two parallel streams with different speed, or different temperature, or different 

composition, meet together. For instance, it can be deduced that, in the laminar regime, similarly to the 

thickness of the viscous boundary-layer, , growing parabolically with distance, x, as /xRex
1/2, the 

thickness of a thermal boundary-layer (either attached to a wall, or free-flowing between two fluids at 

different temperature), T, grows as T/x(RexPr)1/2, and the thickness of a solutal boundary-layer (either 

attached to a wall, or free-flowing between two fluids with different composition), S, grows as 

S/x(RexSc)1/2. 

Boundary layer flow 

Heat and Mass Transfer by convection, focuses on heat and mass flows at walls; that is why fluid flow 

near a solid wall (boundary layer flow) is so important.  

 

Here, the general layout of flow fields at high Reynolds-number-flows (those found in most practical 

problems) should be recalled: the whole fluid flow can be divided in: a) the main nearly-inviscid flow, 

where viscous effects can be neglected, and b) some thin boundary-layer flows where viscous effects are 

concentrated; a seminal approach in Fluid Mechanics, first introduced by L. Prandtl in 1904. We focus 

now on boundary layers attached to walls; free boundary layers, as the mixing layer just mentioned 

above, or other more complicated shear flows like jets and wakes, present similar behaviour: an initial 

laminar region that gets unstable at a transition region (where waves appear), with turbulence 

development further downstream.  

Non-slip condition 

The local equilibrium assumption means that, if the observer considers very small systems (e.g. fluid 

particles, let say ≈10-6 m in size), with not-too-small time scales (let say ≈10-3 s), they can be assumed to 

be at equilibrium, since those times are larger than the relaxation time (which is proportional to size, since 

its inertia is proportional to its volume, and the forcing is proportional to its surface). Thus, the velocity 

field cannot have discontinuities, neither within the fluid, not at the boundaries, and thus fluid particles in 

contact with solid walls must be in mutual equilibrium, i.e. have the same velocity (what implies the non-

slip condition, but also the non-detachment condition), the same temperature, and the same chemical 

potential for each of the species present (not the same concentration, obviously). 

Boundary layer forced-flow over a flat plate 

The boundary layer forced-flow over a flat plate is a canonical fluid-mechanics problem where a uniform 

flow with velocity u∞, meets a flat solid sharp edge aligned with the flow (Fig. 1). In absence of thermal 

and solutal effects, the presence of the plate at zero incidence only introduces a mechanical perturbation, 

a shear stress in the direction of flow, due to the non-slip condition, which, at a constant separation from 

the plate, causes a deceleration of the flow and, as a consequence of the continuity equation, a small 
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transversal outwards flow that makes the region affected growing. The region affected starts at the entry 

border and grows along the length of the plate, with longitudinal velocity growing from u=0 to u=u∞ 

across the layer (and small transversal velocities); we may arbitrarily set the thickness of the boundary 

layer, , as that where u=0.99u∞, and we want to know its growth rate, (x); let us advance that, after 

some length, the orderly shear flow (laminar flow) transforms (after some transition region) into a less-

ordered turbulent-flow with random velocity-fluctuations, with a thicker boundary layer and a much 

thinner laminar sub-layer close to the wall (Fig. 1). 

 

 

Fig. 1. Structure of the boundary layer flow over a flat plate. 

 

The equations governing the flow over a flat plate, assumed steady, incompressible, and without gravity 

effects, are the following: 

 

Mass balance (continuity equation (4) with =constant):  

 

 0 0
uu v v

v
x y L 

 
      

 
 (19) 

 

where an order-of-magnitude analysis has also been performed. Assuming the thickness of the boundary 

layer to be much smaller than the length of the plate under consideration, i.e. <<L, the continuity 

equation shows that transversal velocities are much smaller than longitudinal velocities. Notice that we 

have assumed the flow to be two-dimensional (really it is quasi-one-dimensional), but, when the flow 

becomes turbulent, three-dimensional random motions appear. 

 

Momentum balance (equation (5) with =constant and ∂p∂x=0):  

 
22 2

2 2 2

2

22 2

2 2

D

D 1

u uu u u u
u v

x y x y L L u Lv p
v

t uv v p v v p
u v

x y y x y L L y

 
 




 




 





     
        

      
     

      
              

 (20) 

 

The order-of-magnitude analysis of the transversal momentum-balance shows that transversal pressure 

variations are negligible (proportional to /L), and the longitudinal momentum balance shows that the 

thickness ratio, /L, is of order (u∞L/)-1/2, i.e. /L≈Re-1/2, which is a most important result, to be 

compared with the exact solution, /L=4.92Re-1/2, first developed by Blasius (see below). More precisely, 

the height at which u=0.99u∞, grows parabolically as =4.92(x/u∞)1/2, e.g., for air with =15·10-6 m2/s 

moving at u∞=10 m/s, the boundary-layer thickness after x=1 m from the leading edge is =6 mm. 
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Another consequence of (20) can be found applicable to the wall vicinity: since u|y=0=0, thence 

∂2u/∂y2|y=0=∂p∂x (equal zero for a flat plate), for both the laminar and the turbulent cases! 

 

One of Prandtl's students, P. Blasius, found in 1908 the exact solution by introducing a self-similar 

variable, ≡y(u∞/(x))1/2, that transforms the PDE-system into an ordinary differential equation in the 

auxiliary function (the stream function, such that u=/y and v=/x), ()=(u∞x)1/2f(), with 

f()≡∫(u/u∞)d, the equation being: 

 

 
3 2

3 2 0

0

d d d d
2 0, with 0, 0, 1

d d d d

f f f f
f f



 
   

 

      (21) 

 

which, although not analytically integrable, has a universal solution easily computed numerically, and 

shown in Fig. 2. The longitudinal speed fraction u/u∞=f/ asymptotically grows from 0 at the plate to 1 

at infinity, attaining a precise value of 0.99 for =4.92 (sometimes rounded to =5, where u/u∞=0.992). 

 

Instead of the exact solution to the boundary-layer equations, an integral approximation may be good 

enough, i.e., a solution to integral forms of the mass and momentum equations (first developed by von 

Kármán in 1946), instead of a detailed solution at each point. Let u/u∞=f(y/) be the proposed fitting 

function (with (x) the unknown thickness), already verifying the boundary conditions f(0)=0, f(1)=1, and 

f'(1)=0); another condition may be added, because the longitudinal momentum equation (20) at y=0 is 

0=2u/y2, as said above, and thus f''(0)=0, but this is not much important. The integrated equations are 

obtained for the rectangular control volume of width dx and height H sketched in Fig. 1: 

 

 

 

( )

out ( ) ( )
0 2

( )

0 02 2 0

out

0 0

d
d ( ) ,

d d d
d d

d dd
d ( ) ,

d

x

x x

x

y

y

m u y u H x m m
x u

u y uu y
x x yu

p u y u H x p m u
x y



 



  

  

   







 




    


 

     




 



 (22) 

 

which can be more explicitly formulated in terms of f≡u/u∞ and ≡y/x as: 

 

     
( ) 1

2

0 0 00

d d d d d
1 2 1

d d d d d

x

y

f f f
f f dy f d

x u y x u





  
 

    

 
     

 
  (23) 

 

Now, an explicit f() will yield an explicit (x) from (23). For instance, if we try the simplest polynomial 

verifying the three boundary conditions above, f=22 (i.e. u/u∞=2(y/)(y/)2), we get the differential 

equation (2/15)/dx=2/(u∞), which, with the condition (0)=0 (the layer starts at the leading edge), 

finally yields the result sought: (x)=(30x/u∞)1/2, i.e. the boundary-layer-thickness grows parabolically 

with the distance to the edge. We can now found the un-stretched longitudinal velocity field, 

u(x,y)=u∞(2y/(x(y/(x)2), the longitudinal velocity slope at the wall, 

∂u/∂y|y=0=(u∞/)∂f/∂|=0=2(u∞/)=2u2
∞/(30xu∞)1/2, the wall shear stress =∂u/∂y|y=0, and the drag 
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coefficient, cf, is defined by =cfu∞
2/2, which is cf=(4/301/2)/(u∞x/)1/2. The transversal velocity profile 

can be found from continuity equation (19) as v(x,y)=∫∂u/∂xdy=(5/6)1/2u∞(u∞x/)1/2(3223). 

 

If we add the fourth boundary condition stated above, ∂2u/∂y2|y=0=0, we need a cubic polynomial, which is 

f=(33)/2, and new explicit values can be found as just shown.. Table 3 gives a summary of those 

results, and Fig. 2 the corresponding velocity profiles. Notice, by the way, that the transversal velocity 

v(y) at a stage x grows in a S-shape from 0 (with dv/dy=0) to a maximum v()=0.86u∞/(Rex)
1/2 (0.86 for 

Blasius solution; 0.91=(5/6)1/2 with the simple fitting above), and remains with that value outside the 

boundary layer, contrary to some intuitive reasoning telling that it should vanished outside the boundary 

layer in the undisturbed flow; the explanation is that, with the incompressible fluid model, there is no 

undisturbed flow, the perturbations travelling in all directions instantaneously, and the 
outm  contribution 

always exists (in reality, the whole boundary-layer model relies on the <<x assumption, not valid near 

the leading edge and far outside the boundary layer). 

 

Table 3. Comparison of different solutions to the laminar boundary layer flow over a flat plate. 

Code 

(*) 

Solution, f 

f≡u/u∞ 

Thickness coeff.,  

a, in /x≡a/Rex
1/2 

Slope coeff., b, in 

u/y≡bRex
1/2u∞/x 

Friction coeff.,** 

c, in cf,x=c/Rex
1/2 

Coeff.,d, in  

v∞/u∞=d/Rex
1/2 

4 2(y/)(y/)2 30  

=5.48 

2 15  

=0.365 

4 30  

=0.730 

5 6  

=0.913 

1 (3(y/)(y/)3)/2 3640 13  

=4.64 

117 1120  

=0.323 

117 280  

=0.646 

315 416  

=0.870 

2 sin((y/) 2 (4 )   

=4.80 

 4 8  

=0.328 

(4 ) 2  

=0.655 

 2 8 2    

=0.871 

3 Exact sol.. (21) 4.92*** 0.332 0.664 0.86 

*Codes for Fig. 2. **Defined from =∂u/∂y|y=0=cfu∞
2/2. ***Exact solution when u/u∞=0.99 (it extends 

from y=0 to ∞, whereas the others extend from y=0 to ); in many books, this 4.92 is rounded to 5.0.  

 

 
Fig. 2. Non-dimensional velocity profiles inside the boundary layer. Four models are shown for the 

longitudinal velocity profile, u(x,y) (see details in Table 3), and only the exact profile for the 

transversal velocity profile, v(x,y), with Rex≡u∞x/. 
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Notice that the choice of reference frame modifies the expression of the velocity profile, and, for instance, 

the profile u/u∞=2(y/)(y/)2 (number 4 in Fig. 2) refers to the origin at the plate, whereas if the origin is 

set at the free-end of the boundary layer, the same profile would read u/u∞=1(y/)2. By the way, the 

latter origin is more convenient for fully-developed flow in pipes and two-dimensional ducts, where the 

boundary layers meet at the centre and, with the origin there, the expression u/u0=1(y/)2 is valid for the 

whole duct; notice the change from u∞ to u0, the speed at the centre line, which is (3/2)-times the average 

speed in two-dimensional ducts, and twice the average speed in circular pipes. This parabolic velocity 

profile (named Poiseuille flow) becomes more uniform in turbulent flow, where it can be approximated 

by a higher-power law u/u∞=1(y/)n with n between 6 an 10 (n=7 is the most common). 

 

Besides the normal boundary-layer thickness defined with u(y)=0.99u∞, two other related variables are 

sometimes used to quantify boundary-layer thickness: the displacement thickness *(x) defined by 

   * 1 ( )u u u y dy    , and the momentum thickness(x) defined by    21 ( ) ( )u u y u u y dy    . 

For a laminar boundary layer over a flat plate with no pressure gradient, *≈/3 and  ≈2/15. 

 

All the models developed above, only apply to laminar boundary layer flow over a flat plate. In practice, 

there is an initial length with laminar flow for both sharp and rounded blunt leading edges (i.e. provided 

there is not flow separation at the edge), followed on by a transition region starting at some x such that 

Rex=(0.3..1)·106 (with very smooth plates, laminar flows up to Rex=3·106 have been achieved), and finally 

ending in a turbulent flow downstream. For most engineering problems it is assumed that the transition 

region is abrupt, and that the laminar region spans from x=0 to x=0.5·106·/u∞ (corresponding to a 

standard critical value of Re=0.5·106), and the turbulent one starts there and extends beyond (it actually 

depends on plate roughness and turbulence level of the entry-flow. Turbulent thickness cannot be 

analytically modelled (cross-coupling velocity terms appear in the momentum equation, Newton's law of 

friction =∂u/∂y|y=0 is no longer valid, and so on), and empirical correlations, based on the momentum-

energy Reynolds analogy (explained below), are used; traditional correlations are presented in Table 4, in 

comparison with their laminar counterparts.  

 

Table 4. Comparison of laminar boundary-layer characteristics model with turbulent ones (see Table 3). 

 Velocity profile Layer thickness Friction coefficient* 

Laminar** 

Rex<0.5·106 

2

1
u y

u 

 
  

 
 1 2

4.92

xx Re


  

f, f,1 2 1 2

0.66 1.33
,x L

x L

c c
Re Re

   

Turbulent*** 

0.5·106<Rex<10·106 

7

1
u y

u 

 
  

 
 1 5

0.38

xx Re


  

f, f,1 5 1 5

0.059 0.074
,x L

x L

c c
Re Re

   

  *Local friction coefficient is defined by (x)=cf,xu∞
2/2, whereas global friction coefficient is defined 

by (1/L)(x)dx=cf,Lu∞
2/2. **Blasius laminar velocity profile code 4 in Table 3 and Fig. 2, but with 

exact coefficients for  and cf. Notice the change of y-coordinate origin and sense from Table 3 and 

Fig. 2. ***Prandtl turbulent model as calibrated by Schlichting; x-coordinate origin at transition point. 

 

Notice that turbulent thickness (Table 4) is not defined so precisely as laminar thickness, where the 

separation at which u(y)=0.99u∞, is neat; in turbulent boundary layers, large eddies are created and burst, 
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causing typical protuberances up to 1.2 and depressions down to 0.5. In any case, it can be concluded 

that turbulent thickness is always larger than laminar thickness and grows quicker. Laminar-to-turbulent 

transition (LTT) depends a lot in the pressure gradient in non-flat surfaces (to be studied aside); even 

more, there can be a turbulent-to-laminar transition in the strongly favourable pressure gradient that 

occurs in a converging nozzle (relaminarization). 

 

A general warning on using empirical correlations is to be careful about the application range: all 

empirical correlations are limited in scope, and the most accurate, the narrower their applicability range. 

Thermal boundary layer and solutal boundary layer in a forced-flow over a flat plate 

Analogous to the velocity boundary layer due to the jump from the non-slip condition to the free-stream 

flow, a thermal-boundary-layer appears if there is a difference from wall-temperature to free-flow-

temperature, and a solutal boundary layer appears if there is a difference from wall-concentration of a 

solute to its free-flow concentration.  

 

The governing balance equations for the general case of flow-, thermal-, and solutal-boundary layers are: 

 

 0 0
u v

v
x y

 
    
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  (24) 
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  (27) 

 

Boundary conditions can be layout in a similar way to the velocity boundary layer above-explained, what 

shows that in the case of Pr≡/a=1, the function (TTw)/(TTw) has the same shape as the already-

known u/u∞ profile, and, in the case of Sc≡/Di=1, the function (yiyiw)/(yiyiw) has the same shape as 

the already-known u/u∞ profile; see Table 3 for several approximations. 

 

The main goal in heat convection is founding h (or Nu, in non-dimensional variables), which with the 

above thermal-boundary-layer model yields: 

 

 
w

w
0 0

w w w 0

/ /
0.33

T T y
f

T T
y y

x x

k T y x T y fq hx x
h Nu Re

T T T T k T T







 



  
  

  
 

   

     
      

   
 (28) 

 

where the exact Blasius solution is used (see Table 3); using instead the simplest model (TTw)/(TTw) 

=u/u∞=2(y/)(y/)2)=1(1y/)2, one gets 0.26x xNu Re . Instead of the local Nusselt number, the 

global-average value over a whole plate of length L, NuL≡(1/L)∫Nuxdx=2Nux=L can be used.  
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As above, the turbulent case cannot be analytically solved, but the equivalence between thermal 

boundary-layer and velocity boundary-layer (for Pr=1), allows to compute the temperature gradient at the 

wall in terms of the velocity gradient at the wall, much easier to measure, what gives Nux=cfRex/2, called 

Reynolds analogy, although a modified Reynolds analogy, named Reynolds-Colburn or Colburn-Chilton 

analogy, is commonly used (see below). 

 

An entirely similar with the convection of species i in a mixture, where the mass-convection coefficient, 

hm, and Sherwood number, Sh, are defined in terms of the mass-flow-rate of species i at the interface, 
ij , 

as: 

  

 
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The problem now is to find the solution for the thermal boundary layer in the laminar case but for Pr≠1, 

and for the solutal boundary layer when Sc≠1. Besides, we may want to consider thermal or solutal 

convection to start somewhere downstream, at x=x0, and not precisely at the leading edge of the plate, 

x=0. 

 

For Pr>1, thermal diffusivity (i.e. penetration) is smaller than momentum diffusivity (a<), and 

consequently the thermal boundary layer, T, is thinner than the velocity boundary layer, . Let us 

measure the ratio by ≡T/. The integral method, applied before to the velocity boundary layer, for the 

rectangular control volume of width dx and height H sketched in Fig. 1, gives now: 
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(30) 

 

Using the simplest approximation u/u∞=f()=2(y/)(y/)2 (see Table 3), putting energy proportional to 

temperature, e=cT, a corresponding profile (TTw)/(T∞Tw)=2(y/)(y/)2=f(), and ≡T/, one gets: 
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where the energy integral is limited to T because TT is zero outside. Performing the substitutions and 

integration, (31) yields: 
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 (32) 

 

i.e., the momentum integral gives the thickness law for the velocity boundary layer, which is substituted 

in the energy integral to get, either a constant T/-relation if only the leading terms are kept, namely 

53=4/Pr, or, if an initial condition (x0)=0 is imposed: 
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If, instead of model 4 (see Table 3), the more refined model 1 is used, the only changes are the change in 

the coefficients: =4.64(x/u∞)1/2 instead of =5.48(x/u∞)1/2, and  instead of 0.93 in (33). Besides the 

thermal thickness, the slope of the thermal profile at the wall is important; with model 4, for which we 

found du/dy|y=0=0.365(xu∞)1/2, now we get, for x0=0, dT/dy|y=0=0.39(T∞Tw)Rex
1/2Pr1/3/x, which is not too 

far from the most precise coefficient found by Pohlhausen in 1921 (0.33 instead of (270)1/6=0.39). In the 

traditional non-dimensional form, retaining the possibility of the temperature jump starting somewhere 

downstream, at x=x0, one has: 
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 (34) 

 

Again, the global-average value of the Nusselt number over a whole plate of length L, is often used; for 

x0=0, NuL≡(1/L)∫Nuxdx=2Nux=L. 

 

Notice that the above result comes from a global energy balance in the whole of the thermal layer, thus, 

an integral average of the fluid properties must be used, and not just their values at wall conditions; these 

'film averaged' values are usually computed just as the algebraic mean of the values at wall conditions and 

at bulk conditions (here the undisturbed conditions), i.e. Tfilm≡(Tw+T∞)/2. 

 

Pohlhausen correlation (34), although deduced for Pr>1, has been found to be accurate for 0.6<Pr<60, 

but not enough for the very high Prandtl numbers exhibited by some oils and silicones, and for Pr<<1 

typical of liquid metals. An extension to Pohlhausen correlation in the whole range of Prandtl numbers 

was made by Churchill and Ozoe in 1973 in the form: 
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valid also for the case when the heat flux density at the wall is kept constant (instead of the wall 

temperature), if the coefficient 0.34 is changed to 0.46, and the coefficient 0.047 is changed to 0.021. 

 

From the local Nusselt number Nux, the local convective coefficient is deduced, hx=kNux/x. For practical 

work it may be good enough to use a global convective coefficient hL to be deduced from a global Nusselt 

number NuL. Notice, however, that hL is the average value of hx, but NuL is not the average of Nux; e.g., 

from (34) with x0=0: 
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Reynolds analogy between momentum and energy equations 

Reynolds analogy is based on the similarity between momentum, heat, and mass transfer from the general 

balance equations: 
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It follows from (37) that, if =a=Di, then the scaled functions would be identical, u(x,y)/u=T(x,y)/T= 

yi(x,y)/yi (with u≡u∞0,T≡T∞T0, and u≡yi∞yi0), their slopes at the wall identical too, and thus, 

with the definition of the Fanning factor, cf, and the convective coefficients, for laminar flows, one gets: 
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  (38) 

 

i.e. Nu=(cf/2)Re, known as Reynolds analogy (he deduced it in 1874), and valid for laminar flows (to 

apply Newton's law of friction) and Pr=Sc=1 (for =a=Di).  

 

The influence of Pr1 (and/or Sc1) can be retained by stretching the transversal dimension differently 

for each function in (36) to absorb the respective coefficient; i.e., now the functions which are identical 

are, u(x,y/)/u=T(x,y/a)/T= yi(x,y/Di)/yi, and the slopes which are identical are. 
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u(x,y/)/u=u(x,y)/u= T(x,y/a)/T=aT(x,y)/T= yi(x,y/Di)/yi=Diyi(x,i)/yi,  Thence, (38) 

becomes: 
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i.e. Nu=(cf/2)RePr. However, if we compare the exact solutions to the laminar boundary layer obtained 

above (Eq. (34) and Table 4), we obtained a more accurate Pr-correction to Reynolds analogy: 
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which is known as Chilton-Colburn analogy (1934); St is a combined parameter named Stanton number. 

Although (40) has been developed only for a laminar-boundary-layer flow over a flat plate, it applies with 

good accuracy to both laminar and turbulent flows over flat plates in the 0.6<Pr<60, and even to any 

turbulent flow with pressure gradients, but not to laminar flows with p0 (i.e. Colburn-Chilton analogy 

can be applied to any turbulent flow, but only to laminar flows over flat plates, not to laminar flows in 

pipes or around bodies). A compilation of heat-transfer correlations in forced convection over a flat plate 

is presented in Table 5. A note on correlations for turbulent flow is required: the local Nusselt number 

Nux is used to get the local convective coefficient using hx=kNux/x with x measured from the leading edge 

of the plate (not from the start of the turbulent layer), whereas the global Nusselt number NuL is used to 

get the global convective coefficient using hL=kNuL/L which includes both the laminar zone and the 

turbulent zone: 
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Table 5. Heat transfer correlations in forced convection over a flat plate. 

Flow regime Correlation 

Laminar 

Rex<Retr=0.5·106 

(i.e. x<xtr=0.5·106/u) 

 

(coefficients shown are for constant Twall;  

for constant qwall, change  

If 0.6<Pr<500 (modified Pohlhausen equation): 
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coeff. 0.33 to 0.45,  

coeff. 0.66 to 1.32) 
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If Pr<0.05 (liquid metals): 
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Turbulent 

0.2·106<Re<108 

(either constant Twall  

or constant qwall). 

The global value includes the  

laminar contribution at Rex<0.5·106. 

If 0.6<Pr<60: 
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An entirely similar analogy can be applied to mass convection: 
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valid for 0.6<Sc<3000 and both laminar and turbulent flows. 

 

Notice, by the way, that other types of friction factors different to the Fanning friction factor, cf, defined 

in (37) are often used in some cases, particularly in pipe flow, namely the Darcy friction factor, cf 

(named f sometimes). 

Steps to solve heat and mass convection problems 

To solve a heat or mass convection problem, the following steps are usually followed: 

 Make a quick order-of-magnitude analysis using typical values as from Table 6. 

 Geometry characterisation, i.e. try to reduce the geometry to a canonical case (e.g. flat wall, 

cylinder, tube bank...). 

 Reference conditions characterisation, i.e. identify type of fluid, and estimate fluid properties at 

estimated film-averaged conditions. 

 Reynolds number computation, to discern the flow type. 

 Selection of the appropriate non-dimensional correlation (local or global).  

 

Table 6. Order of magnitude of convection coefficient, h, for typical configurations. 

Configuration Typical value of h [W/(m2·K)] Typical range, h [W/(m2·K)] 

Natural convection in air (<1 m/s) 10 2..20 

Forced convection in air (>5 m/s) 50 20..200 

Natural convection in water (<0.1 m/s) 200 10..1000 

Forced convection in water (>0.5 m/s) 5000 50..20 000 

Natural convection boiling in water 4000 1000..10 000 

Forced convection boiling in water 30 000 10 000..50 000 

Natural convection condensation in water 6000 2000..10 000 

Forced convection condensation in water 50 000 10 000..100 000 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c12/Forced%20and%20natural%20convection.pdf
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Exercise 1. Find the heat transfer rate from a flat plate of 20.5 m2 at 100 ºC when ambient air is blowing 

over the plate at 10 m/s. 

Solution. It is a boundary-layer convection problem.  

 Order-of-magnitude analysis:Q hA T  , with h=50 W/(m2·K) (forced convection in air), 

A=20.5=1 m2, and T=10020=80 K, what yields 50 1 80 4 kWQ hA T      , but this may be 

double or half, so we follow on with a finer analysis. 

 Geometry. The direction of flow in the plane is not specified; we will try both extremes: flow 

along the shortest side, and flow along the longest side (we could work out any direction by 

considering longitudinal strips and integrating). 

 Reference conditions. Assuming ambient air at 15 ºC and 100 kPa, film-averaged temperature is 

(15+100)/2=58 ºC, and air properties can be estimated to be =p/(RT)=105/(287·331)=1.05 kg/m3, 

cp=1010 J/(kg·K), k=k0(T/T0)
1/2=0.025(331/288)1/2=0.029 W/(m·K), a=k/(cp)=14·106 m2/s, 

=0(T/T0)
1/2/(/0)=17·10-6 m2/s, Pr=/a=0.72. 

 Reynolds number. Re=vL/=10·0.5/15·10-5=0.33·106 if along the short side, and 

Re=vL/=10·2/15·105=1.3·106 if along the longest side. 

 Nusselt correlation. For the short case, Re=0.33·106 is smaller than the typical transition to 

turbulent boundary-layer (Recr=0.5·106) and the whole plate can be assumed under laminar flow; 

thus, we use Chilton-Colburn analogy for Pr>0.6, 1/3 1/20.66L LNu Pr Re , obtaining 

Nu=0.66·0.721/3·(0.33·106)1/2=340, and thence h=kNu/L=340·0.029/0.5=19.7 W(m2·K), which 

means q =h(TwT∞)=1.67 kW/m2 and Q qA =1.67·(0.5·2)=1.67 kW in total. 

 If the flow-along-the-longest-side case is considered, Re=1.3·106 > Recr=0.5·106; thus, the flow 

was laminar for a while and then changed to turbulent, so we take for Pr>0.6 
1/3 4/50.037L LNu Pr Re , what gives Nu=0.037·0.721/3·(1.3·106)4/5=2580, and thence 

h=kNu/L=2580·0.029/2=37.4 W(m2·K), which means q =h(TwT∞)=3.18 kW/m2 and Q qA

=3.18·(0.5·2)=3.18 kW in total. 

 Notice that blowing along the longest side significantly increases the rate of heat transfer (doubles 

it in our case). 

Temperature and pressure effects on fluid properties 

In most heat convection correlations, fluid properties are evaluated at a fixed temperature dependent on 

the problem (the reference temperature), and assumed constant at every point and time. Tow questions 

then arise: how to choose the best reference temperature, and how further corrections should be 

introduced, if any. Prandtl number, Pr≡/a, is entirely dependent on fluid properties, and enters into most 

heat convection correlations. Reynolds number, Re=vL/, is dominated by viscosity. Thermal expansion 

governs free-convection parameters like Ra and Gr. 

 

The reference temperatures commonly used are: 

 For heat convection between a wall at Tw and a fluid with a far temperature T, the so-called film 

temperature Tf≡(Tw+T)/2 is used as reference to evaluate all fluid properties. 
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 For heat convection in a pipe, the most appropriate temperature reference is the inlet-and-outlet 

bulk average, although, when the outlet is unknown, the inlet mean temperature-difference 

between the fluid and pipe wall is used as reference. 

 

From the several fluid properties involved in heat convection without phase change (density, , 

viscosity,, thermal conductivity, k, thermal capacity, cp, thermal expansion coefficient,, and so on), 

viscosity of liquids is the most sensitive to temperature variations, all the others being mildly dependent 

on temperature and pressure. 

 

Gases 

 Density. Density in gases can usually be computed from ideal gas law =p/(RT) without any 

other correction. Temperature affects almost all gas properties. Pressure, if not below 102 Pa, 

has a negligible effect on cp, k, and  (and on Pr≡cp/k), but the Reynolds number is almost 

proportional to gas pressure (Re≡vL/  p), and Rayleigh number, Ra≡gTL3/(), 

proportional to p2 (and hence the convective coefficient in natural convection is proportional to 

the square root of pressure, h=h0 0p p ). For p<102 Pa the continuum model starts to fail, and 

for p<101 Pa the molecular mean free path becomes comparable or larger than the size of the 

object of interest, and kinetic gas theory must be applied. 

 Thermal capacity. Slowly increases with temperature (polynomial fittings are common); e.g. for 

air at 100 kPa, cp=1032 J/(kg·K) at 100 K and cp=1141 J/(kg·K) at 1000 K. 

 Thermal conductivity and dynamic viscosity. This two transport coefficients increase with 

temperature with a small power-law (k=k0(T/T0)
n and =0(T/T0)

m); although kinetic theory of 

gases show that both, thermal conductivity and dynamic viscosity, grow with T1/2, a linear fit 

better fits the data. For more precise correlations, the following exponents have been proposed: 

n=0.71 and m=0.65 for monatomic gases, n=0.86 and m=0.70 for diatomic gases, n=1.3 and 

m=0.88 for triatomic gases. Both transport coefficients are nearly unchanged by pressure up to 

10 MPa, increasing to a double value at some 50 MPa. 

 Thermal diffusivity. A general dependence with temperature and pressure is of the form Tn/p, 

with 1.5<n<2 (n=3/2 according to simple kinetic gas theory); e.g. for air at 100 kPa, a=2.54·10-6 

m2/s at 100 K and a=168·10-6 m2/s at 1000 K. 

 Prandtl number. Gases have a typical value of Pr=0.7 and a small temperature dependence, with 

0.5<Pr<1 under most p-T-conditions; e.g. for air at 100 kPa, Pr=0.79 at 100 K and Pr=0.73 at 

1000 K. 

Liquids 

 Density. Temperature affects almost all liquid properties. The linear thermal expansion model 

for the density of liquids is good enough in most cases (far from the critical-point conditions). 

Saturated water, for instance, has =1002 kg/m3 at 0 ºC,=960.6 kg/m3 at 100 ºC and =322 

kg/m3 at its critical point, 374 ºC. Pressure has a negligible effect on liquids (above their vapour 

pressure). 

 Thermal capacity. May slightly increase or decrease with temperature; e.g. for saturated water, 

cp=4218 J/(kg·K) at 0 ºC and cp=5728 J/(kg·K) at 300 ºC. 
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 Viscosity. A simple temperature-corrections for liquid viscosity is: 

 

  
( )

exp 1
T T

C
T









  
    

  
 (42) 

 

 with a constant value of around C7; e.g. for water, C=6, with =0.0011 Pa·s at T=288 K; for 

many oils, C=8, with a typical value of (see Liquid data) =0.1 Pa·s at T=288 K, and so on. 

Saturated water, for instance, has =1.79 m2/s at 0 ºC and =0.135 m2/s at 300 ºC. 

 Prandtl number. Most liquids, except viscous oils and liquid metals, have a range of 2<Pr<20 

(e.g., at 15 ºC, Pr=7 for water, Pr=8 for n-octane, Pr=19 for ethanol), decreasing with 

temperature (e.g. Pr=1.02 for saturated water at 300 ºC, Pr=13.6 at 0 ºC). Viscous liquids like 

oils and glycerine may have large Prandtl-values, 50<Pr<105 (larger values are seldom 

considered as convecting), quickly decreasing when temperature is increased. Most liquids 

metals, under most p-T-conditions, have 0.005<Pr<0.05, with a typical value of Pr=0.01. 

 

After having computed all fluid properties at the appropriate reference temperature, some corrections may 

be due, to account for the different possible temperature gradients. For gases, when the wall-to-bulk 

temperature ratios is in the range 0.5<Tw/T<2, using the film temperature is good enough. For liquids, 

and for gases at high wall-to-bulk temperature ratios, heat convection correlations computed with mean 

film temperatures are modified with a viscosity factor, as the (w/)1/4 term in Table 5.  

Forced and natural convection (aside)  

Convection with phase change (aside)  

Heat exchangers (aside) 
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