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MIXTURES  

A mixture is a system that is analysed in terms of two or more different entities; e.g. air can be taken as a 

mixture of nitrogen and oxygen (but can be taken as a pure substance if composition does not change in 

the problem at hand); oxygen itself can be taken as a natural mixture of 99.8 % atoms of isotope 16O and 

0.2 % of isotope 18O; a fully-ionised plasma can be taken as a mixture of ions and electrons; the contents 

of a commercial butane bottle can be taken as a mixture of liquid and vapour, each one being a mixture of 

butane and propane; etc. We analyse here mixtures of simple non-reacting chemical substances that form 

a single phase or a multiphase system, but that they exchange species between phases or with the 

environment. Chemically reacting mixtures are covered separately.  

 

Most substances found in nature are mixtures of pure chemical elements or compounds: air, natural gas, 

seawater (but also tap water), coffee, wine, gasoline, antifreeze, body fluids, etc. The reason for this 

widespread occurrence is that there is a natural tendency for entropy to increase in the mixing (although 

energy minimisation might work against, as in liquid vapour equilibrium under gravity). Thus, some 

exergy has to be applied to a mixture to separate its components. Furthermore, some exergy is also 

applied in many practical cases to accelerate the natural mixing process, notably by mechanical stirrers, 

vibrations and ultrasounds, or electromagnetic forcing; in flow systems, nozzles, swirls, colliding jets, or 

pulsating injectors are commonly used for the same purpose. The mixing time may be short in gases (we 

soon detect the smell of an open perfume flask), long in liquids (who waits for sugar to dissolve in a 

coffee cup), or extremely long in solids (stained glass holds its metal-oxide nano-particles, which give 

their vivid colours, dispersed in the glass matrix for centuries). 
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Mixtures usually form multiphasic systems except when the components are perfectly miscible (notably 

gas/gas mixtures, and some liquid/liquid mixtures like ethanol/water), or when, having some miscibility 

gap, the mixture is unsaturated.  

Saturated states 

In thermodynamics, a saturated state is a multiphasic equilibrium state. When phase changes in pure 

substances were studied, saturated vapour, saturated liquid and saturated solid, were considered. For 

mixtures, saturation (with respect to one of its components) is the point at which the mixture can dissolve 

no more of that substance (e.g. water saturated with sugar is the sugar/water solution in equilibrium with 

sugar, air saturated with water vapour is the water/air mixture in equilibrium with liquid water, and so 

on).  

 

Unsaturated mixtures can become saturated by addition of more substance, or by just changing 

temperature or pressure at constant composition. Notice that there are some mixtures that cannot get 

saturated, as mentioned above. 

Standard thermodynamic states 

Thermodynamic properties of a mixture depend on temperature, pressure, and composition. When 

analysing mixture behaviour, and when property data are tabulated, some standard thermodynamic state is 

chosen as reference (‘standard’ just means established by authority or custom). 

 Temperature standard: the mean sea level air temperature, T0=288.15 K (15 ºC), should be the 

preferred standard, but T=298.15 K (25 ºC) is the most used temperature reference in 

thermochemistry, and so we adopt it when studying Chemically reacting mixtures, and other 

standard values are also used in some other context: e.g. 0 K (a limit used in ideal gas models), 

273.15 K (0 ºC; a most simple reproducible state), and 293.15 K (20 ºC, a comfort working 

environment). The effect of temperature in a mixture is difficult to model except for the perfect 

substance model (i.e. ideal gases or ideal liquids, with constant thermal capacity, cp). 

 Pressure standard: the mean sea level pressure p0=105 Pa (1 bar), is the preferred standard, but 

p0=1.01325 bar (1 atm, 101.325 Pa) was the traditional standard before 1982, and is still used (the 

difference is often negligible). When real gas behaviour is to be analysed in terms of the ideal gas 

model, the standard thermodynamic state at p0=105 Pa is not the real value at p0=105 Pa but the 

extrapolation of the ideal model (p0) up to p0=105 Pa. The effect of pressure in a mixture is 

simple to model except for very large pressures: gas-mixtures behaviour is proportional to 

pressure, and liquid-mixture behaviour is nearly independent of pressure. 

 Composition standard: the usual reference state for any chemical species in a mixture is its pure 

chemical substance, but when solids or gases are dissolved in liquid solvents, the reference state 

for these solutes is the infinite dilution property (i.e. when its molar fraction is very small, xs0) 

extrapolated to unitary molar concentration, although 1 mol/L is most often used instead of the 

strict SI unit 1 mol/m3), infinite dilution (often extrapolated to 1 mol/L). The effect of composition 

in a mixture is difficult to model except for the ideal mixture model presented below. 
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We only consider ideal mixtures below; real mixtures are based on ideal mixture models and 'excess 

functions'; ideal solutions (a kind of real mixture amenable to simple modelling), and some important real 

solution properties, can be found aside. 

HOMOGENEOUS-MIXTURES 

We start by considering homogeneous mixtures, i.e. we consider a homogeneous system formed by 

coming into intimate contact two or more different homogeneous systems; i.e. a heterogeneous system 

that becomes a homogeneous system when mixed. So we say that water and air do not mix, water and oil 

neither, but water and alcohol certainly do. However, it is difficult to distinguish a mixture from a fine 

dispersion (e.g. oil and water shaken, milk, water and air in a cloud). Homogeneous systems have particle 

size below d=10-9 m, and their properties are independent of size for systems of size above L=10-7 m, 

although in the nano-range, (10-9..10-7) m, their behaviour is size-dependent. 

 

The easiest mixtures to deal with are gaseous mixtures: gases readily mix (as noticed when distant odours 

enter our nostrils). The most important gaseous mixtures are humid air (dry air plus water vapour), fuel 

gases (natural gas, town gas, liquefied petroleum gases), and combustion gases (fuel/air and exhaust 

mixtures). The thermodynamics of gaseous mixtures is rather simple: an ideal mixture has a weighted 

average of their perfect-gas component properties (some corresponding state models may be used to 

account for non-ideal behaviour). An additional feature is the limit of solubility of vapours in a gaseous 

mixture (e.g. how much water vapour may mix with a certain amount of nitrogen). 

 

Liquid mixtures may be formed from two liquids (e.g. water and ethanol), from a liquid and a gas that 

dissolves in the liquid, or from a liquid and solid that dissolves in the liquid. In most cases one liquid is 

preponderant and is called the solvent, and the rest of substances (gases, liquids and solids) are called 

solutes, the mixture being named solution. The thermodynamics of liquid mixtures is usually rather 

complex, except for mixtures of similar-molecule liquids (e.g. hydrocarbons), where an ideal model 

similar to a gas mixture can be applied. In most cases, however, there are energetic and volumetric effects 

and some 'excess functions' must be added to the thermodynamic formulation (these non-ideal behaviour 

may be used to produce hot pads and cold pads). Detailed analysis of solutions can be found aside. The 

limits of solubilities are very difficult to predict; for instance, at 15 ºC, sugar can only dissolve in water 

up to 65 % by weight in the syrup, salt can only dissolve in water up to 35 % by weight in the brine, air 

can only dissolve in water up to 10 ppm massive in nitrogen and 10 ppm in oxygen (note that oxygen 

dissolves better). Moreover, contrary to a gas mixture, a liquid mixture may appear in more than one 

liquid phase, given rise to a fluid interface (e.g. oil and water mixtures) as in liquid/gas two-phase 

systems. On top of that, some solutes (solid, liquid or gas) dissociate more or less into ions (electrolytes) 

when mixed with some liquids, notably water, giving rise to complex electrochemical effects (see 

Solutions). 

 

Solid mixtures (e.g. metal/metal, wax/wax) have so little mobility (except at very high temperatures) that 

they are usually processed in the molten state (i.e. as liquid mixtures). 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Excess%20functions.pdf
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Under the influence of external force fields like gravity, centrifugation or electromagnetic fields, all 

mixtures settle (see Mixture settling), but we here assume, as implicitly done in two-phase mixtures of 

pure substances, that they are either unsettled or perfectly settled (e.g. gas phase over liquid phase). 

Mixture specification 

The state of a pure substance is fixed by temperature and pressure. The state of a multi-component system 

requires additional variables to specify the composition. The variance of a system, or Gibbs phase rule, 

V=2+CP, was analysed in detail in Chapter 2: Entropy. For single phase mixtures (P=1), V=2+C1, i.e., 

besides temperature and pressure, as many intensive composition-parameters as the number of 

components minus one (e.g. just one factor for a binary mixture). 

 

The basic property of a single-phase mixture is its composition, which may be specified by different 

parameters, the most usual being: 
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The molar mass of the mixture is: 
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Molar variables are favoured in the analysis of mixtures, because experience shows that mixture 

behaviour is in many cases proportional to the number of particles (proportional to the amount of 

substance), and not to other physical characteristic or attributes as their mass. Properties that really 

behave in that way are called colligative properties, several of them being covered at the end of this 

chapter.   

 

It is here assumed that mixture composition is prescribed. The problem of finding the qualitative or 

quantitative composition in a mixture is known as chemical analysis, or just analysis, using techniques 

that may be grouped as: 

 Chemical methods of analysis, mainly referring to the old “wet techniques” and other classical 

methods: characteristic reactions, titration, selective absorption, liquid or gas chromatography 

(the most widespread analytical technique), etc. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixture%20settling.pdf
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 Physical methods of chemical analysis, ranging from the omnipresent balance, to the most 

sophisticated radiometric and spectroscopic techniques, and including the thermal methods of 

chemical analysis (e.g. scanning calorimetry and fractional distillation). 

 

Many times, a sample of the mixture is analysed off-line and discarded, often through a separation 

process of chromatography, but most advanced analytical techniques are non-intrusive and on-line. 

Ideal mixture model 

The aim of mixture modelling is to provide a mixture-property model in terms of some pure-substance-

property model and some generic mixing model, to avoid the need for experimental data for all the 

variety of compositions. 

 

The most restrictive thermodynamic model of a mixture is called the ideal mixture model, IMM, which 

assumes that volumetric and energetic properties of a mixture are just the linear combination of those of 

their pure constituents (weighted with their relative proportions), and that mixing entropy only depends 

on proportions (and not on material properties). All the components of an ideal mixture at a given T and p 

must be in the same phase when pure: e.g. at 15 ºC and 100 kPa, nitrogen and oxygen in air, water and 

methanol in liquid phase, but not nitrogen and water or water and salt.  

 

For a pure substance we learn that a full set of data for the equilibrium states was (Chapter 4): v=v(T,p) 

and cp= cp(T,p0). The ideal mixture model assumes: 

 

    *, , ,i i iv T p x x v T p  (7.6) 

 c T p x x c T pp i i pi
, , ,*

0 0b g b g  (7.7) 

 

i.e. the molar volume of the mixture is the averaged molar volume of the pure components (the * is meant 

to recall 'pure substance'), and similarly for any other additive conservative property (e.g. 

h(T,p,xi)=xihi*(T,p)). To check the validity of the IMM model one can measure all the terms in (7.6) and 

compute the excess molar volume (and similarly for the energies). Notice that (7.6-7) could also be stated 

as v(T,p,yi)=∑yivi
*(T,p) and cp(T,p,yi)=∑yicpi

*(T,p) if now all the v's and cp's are specific volume and 

specific thermal capacities, instead of molar volumes and molar thermal capacities, but this cannot be 

extrapolated (e.g. M=∑xiMi≠∑yiMi, mixing entropies depend directly on xi but not on yi, and so on). 

 

Entropy however, although it is additive and thence s(T,p,xi)=xisi(T,p,xi) (si being the partial molar 

entropy siS/ni), it is not conservative, it increases on mixing, and thus we have: 

 

    *, , ,i i iv T p x x v T p  (7.6) 

 

 s(T,p,xi)=xisi*(T,p)+smixing.. Within the ideal mixture model, this entropy increase is directly obtained 

from (2.1) with probabilities to find a molecule of species i being proportional to its molar fraction (and 

changing the constant k, per molecule, to the constant R, per mol); i.e.: 
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 mixing lni is R x x     (7.8) 

 

Thus, the molar entropy of mixing in an ideal mixture, is just a geometric factor of species distribution, 

and do not depends on the nature of the substances. Real entropies of mixing are computed from the 

absolute entropies of the components and the actual mixture (Chapter 9: Thermodynamics of chemical 

reactions). 

 

The Gibbs function is not conservative either, and for an ideal mixture one gets: 

 

  , , ig T p x h Ts    

          * * *, ( , ln ) , lni i i i i i i i i ix h T p T x s T p R x x x g T p RT x x          (7.9) 

 

what serves to get the explicit dependence of chemical potentials on composition for an ideal mixture, 

since, from (4.4): 

 

 g T p x n n x T p x T p RT xi i i i i i i i i, , / , , , ln*b g b g b g          (7.10) 

 

where i*=hi*Tsi*. Recall that, in general, i not only depends on xi but on the other molar fractions xj in 

the mixture, and that the algebraic value of i (sign and absolute value) is of little interest because it 

depends on these other mixture parameters, but, in a natural (spontaneous) process, i decreases. 

 

To get the explicit dependence of chemical potential on temperature and pressure we use Maxwell 

relations (equality of second crossed derivatives) from dG=SdT+Vdp+idni to get: 
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where  refers to an arbitrary reference state that for ideal mixtures coincides with the state of the pure 

substance at conditions T and p (see Excess functions for the more general case). 

 

The ideal mixture model can be widened if, instead of the values of pure substances at the same T and p 

conditions, one considers in (7.6-7) the values for pure substances at some ideal states as T and p0 (see 

Liquid-vapour mixtures). 

 

It is good time now to recall that for a system to be in equilibrium, its temperature must be uniform, its 

velocity field must correspond to a solid-body motion, and its chemical potential has to verify 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c09/Chemical%20reactions.pdf
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 
2

1
2i i iM gz M r    =constant. In the study of mixtures one usually assumes the absence of external 

force fields, and thence the chemical potential is also uniform at equilibrium, but an example follows of 

how to deal with external force fields. 

 

Exercise 1. Change in composition of dry air with height 

Real mixtures 

Real mixtures deviate more or less from this simple ideal-mixture model. For gaseous mixtures, the 

approximation may be good enough for not-too-high pressures, but for liquid and solid mixtures it may 

deviate so much that this ideal model must be corrected with so called excess functions).  

 

For gaseous mixtures, perhaps the simplest non-ideal mixture model is using a non-ideal equation of state 

with its parameters average-weighted with those of the pure components; e.g. using van der Waals 

equation of state, (p+a/v2)(vb)=RT, with constants a=xiai and b=xibi, or the corresponding state model 

with Tcr=xiTcr,i and pcr=xipcr,i; the latter is known as Kay's rule, and the former is usually enhanced by 

the virial mixing rule for the energy term, a=xixjaij, with aii=ai and aij for ij being additional cross-

correlations parameters (the linear rule for the volume term, b=xibi, is good enough in most 

circumstances, so there is no need for a quadratic mixing rule as for the energy term). 

Exergy of demixing 

One of the basic goals of Chemical Engineering is to produce valuable substances by separation from 

their mixtures, reaction with their ores, or synthesis from other substances. Furthermore, most chemical-

analysis methods rely on a first stage of mixture separation (notably gas or liquid chromatography), 

followed by detection and quantification of the isolated species, although modern spectrometric methods 

may perform a direct non-intrusive analysis.  

 

Mixture separation (demixing) may be performed by different processes: by gravity or centrifugal 

sedimentation, by flowing through porous-plugs (chromatography) or selective membranes (see at the 

end), by phase change (distillation, precipitation, diffusion to an immiscible liquid), by ionisation and 

application of electric or magnetic fields (mass spectrography), by absorption with selective synthetic 

zeolites, by absorption in a supercritical fluid (high solubility) that desorbs at low pressure, by 

electrochemical purification (concentration fuel cells), etc. Already in the 4th century b.C. Aristotle 

wrote: “Salty water, when it turns into vapour, becomes sweet, and the vapour does not form salt water 

when it condenses again. This is known by experiment”. 

 

We do not intend to go on with any particular method, but to consider just the thermodynamic limit of 

minimum energy required to accomplish a demixing (all practical processes will need more energy, which 

would be computed with the appropriate energy balance once the details are given). A common demixing 

process is dehumidification (removing water vapour from air; see Humid air).  

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Exercise1.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Excess%20functions.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c08/Humid%20air.pdf
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Exergy was introduced in Chapter 3, and the general expression for the exergy of a system at equilibrium 

in the presence of an infinite atmosphere, deduced to be (3.9). The exergy balance for a control volume 

was presented in (5.5), and, once chemical composition is accounted for, yield: 
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with the molar exergy of flow: 

 

      h T s x
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b g b g
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Equations 7.13-14 are the general expressions for the exergy of a mixture, but we want to solve first the 

most basic problem of how much work is required to separate a gaseous component of the ambient 

gaseous atmosphere. The answer follows from (7.14): the first parenthesis is nil because no temperature 

or pressure variation would take place for minimum work, and for the difference in chemical potential 

(7.10) is used, resulting in that the exergy of a pure gaseous component is: 

 

  i iRT x0 0 0  ln  (7.15) 

 

e.g. getting pure oxygen from air costs a minimum of 8.3·288·ln0.21=3.7 kJ/mol. Notice that this energy 

cost is not associated to working against any attractive force to extract the oxygen molecules (particles are 

non-interacting in the ideal gas model); it is a genuine entropy contribution without global energy change 

(21 mol of O2 plus 79 mol N2, at T0 and p0, have the same energy either mixed or unmixed; the mixing 

process is with E=W+Q=0, W=0, Q=0, S>0, G<0, i.e. a natural process, whereas the ideal demixing 

process would be with E=W+Q=0, W>0, Q<0, S<0, G>0, i.e. an artificial process). 

 

For (7.15) to be valid, the species must remain in the same phase after separation at T0 and p0, what is not 

the case for water vapour since at 15 ºC and 100 kPa it is liquid, if pure. But the computation may be 

done in two parts: first a separation to pure gas at T0 and p*(T0), and afterwards a pressure variation (with 

phase change) from p*(T0) to p0, with the result: 

 

 
* *

0 0 0 0 0
0 0 0 0 0 *

0 0

( ) ( )
ln ln ln

/ ( )

i
i i

L

p T p p T x p
RT x RT RT

p M p T





       (7.16) 

 

In the next chapter we will see that the argument of the last logarithm is precisely the relative humidity. 

 

Exercise 2. Air fractionation  

 

Exergy being a state function, it means that the maximum obtainable work from a given pure component 

and the atmospheric mixture is precisely the same; e.g. if one had a flow of pure oxygen at thermal and 

mechanical equilibrium with the atmosphere, one might get 3.7 kJ per mol of oxygen, by returning it to 

atmospheric mixture through an appropriate non-consuming device. However unreal this problem may 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Exercise2.pdf
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sound for the oxygen/air universe, consider that the same applies to the problem of pure water / salt water 

universe that is readily available at any river mouth, and projects have already been thought to profit from 

it. 

LIQUID-VAPOUR MIXTURES 

It is clear that the first stage in the study of mixtures is to restrict ourselves to binary mixtures. Sometimes 

this two-component model is even applicable to mixtures of many more chemical species, as when humid 

air is treated as a binary mixture of dry air (a multicomponent mixture itself) and water vapour. Some 

other times, however, even starting with only two species, as H2O and NaCl, the system gets ternary by 

the formation of new chemical compounds (hydrates or anhydrous) in the mixture. 

 

When a gaseous binary mixture is cooled (temperature decreases at constant pressure and composition), 

point P in Fig. 7.1, liquid drops eventually appear of a liquid mixture of different composition, P'', than 

the rest of the gas, P'. That difference in composition is the basics of distillation, the process of separating 

components in a mixture by natural phase-change segregation. 

 

In binary mixtures it is usual to name only one molar fraction, x, the other being 1x. In fact, the molar 

fraction x in the abscissa may refer to the total molar fraction of the selected species i, xi, to the molar 

fraction in the liquid phase, xL,i, or to the molar fraction in the vapour phase, xV,i. Contrary to pure 

substances, mixtures do not show a single condensation temperature (for a given pressure), but a range of 

temperatures from the first drop appearing (condensation curve) to the last bubble remaining (boiling 

curve), except when an azeotrope is formed (Fig. 7.1).  

 

 

Fig. 7.1. Temperature vs. molar fraction at constant pressure (upper row), and pressure vs. molar fraction 

at constant temperature (lower row), for binary mixtures of different substances with different 

types of solubility, from ideal mixtures that perfectly mix (left) to insoluble liquids (right). A 

liquid mixture that boils at constant temperature (as a pure substance, retaining also the 

composition) is called an azeotrope (e.g. water and ethanol have an azeotrope for 95.6% by mass 

ethanol).  
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Plotting condensation and boiling curves for different real substances yields the different diagrams 

depicted in Fig. 7.1, ranging from a perfect mixture (the ideal mixture model above defined), to a mixture 

of insoluble liquids, through partial solubility mixtures with azeotrope. If the molecular attraction of 

components A and B in the mixture is much larger than both A-A and B-B, the boiling-point curve shows 

a maximum (azeotrope), and have negative enthalpy of mixing and negative excess volume (e.g. 

water/nitric-acid mixtures have Taz=120 ºC while Tb,water=100 ºC and Tb,nitric=87 ºC), whereas if the 

molecular attraction of components A and B in the mixture is much smaller than both A-A and B-B, the 

boiling-point curve shows a minimum (azeotrope), and have positive enthalpy of mixing and positive 

excess volume (e.g. water/ethanol mixtures have Taz=78.2 ºC while Tb,water=100 ºC and Tb,ethanol=78.4 ºC). 

 

Similar behaviour occurs when pressure is increased in a gaseous binary mixture at constant temperature 

and composition (Fig. 7.1 lower row). However, only T-x diagrams are used in liquid-solid phase 

diagrams because pressure has little influence on condensed phases. 

 

Although liquid-solid phase diagrams may be similar to Fig 7.1, for dissimilar substances (e.g. iron and 

carbon, as for steels), much more involved phase diagrams appear, with several allotropic phases and 

formation of compounds. A relevant feature in such diagrams is the eutectic point, corresponding to the 

minimum melting point of an alloy. Liquid-vapour phase diagrams are much used in chemical 

engineering, and solid-liquid diagrams in metallurgy and geology. Some solid-liquid phase diagrams can 

be found aside. 

Ideal liquid-vapour mixtures. Raoult's law 

For the study of binary liquid-vapour mixtures we extend the ideal mixture model defined by equations 

7.6-7 in the following way. For the temperature of the mixture, the pressure in the mixture may be above 

the two vapour pressures of the pure components (both would be liquid if pure), below both (both would 

be gas if pure), or in between. Computation of energy and entropy changes for mixing or demixing in the 

two former cases is trivial (Eq. 7.8), and for temperature and pressure changes without phase change also 

(e.g. ideal gas model or ideal liquid model); the only difficulty is when a phase change would occur if the 

mixture were separated at constant temperature and pressure. But we could circumvent this problem by 

first changing the pressure in the mixture to go outside the two-phase region and then separate, what 

teaches that the same ideal mixture model may be applied but assuming that the pure components remain 

in the phase they have in the mixture. If we consider an ideal gas reference state (p0) for each 

component, Equations 7.6-7 are substituted for a two-phase mixture by: 

   

 gas phase:  , ,V i i

RT
v T p x x

p
  (7.18) 

 liquid phase:   , ,
( )

i
L i i

Li

M
v T p x x

T
  (7.19) 

 gas phase:   , , ( )
ViV i i ph T p x x c T T    (7.20) 

 liquid phase:   , , ( ) ( )
Vi i i iL i i p b LVb Li bh T p x x c T T h c T T        (7.21) 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solution%20properties.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solution%20properties.pdf
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where its own normal boiling point 'bi' is used for the phase-change of each component i. It must be 

mentioned that the ideal mixture model may give a poor approximation to mixture densities in the liquid 

state (for a binary liquid mixture, Eq. (7.19) becomes ML/L=xL1M1/L1+xL2M2/L2, with 

ML=xL1M1+xL2M2 being the liquid mixture molar mass), and the simpler rough interpolation 

L=xL1L1+xL2L2 may yield better results.  

 

Restricting the analysis to ideal binary mixtures, the liquid-vapour equilibrium at given T and p requires 

the equality of the chemical potentials in each phase for each component; for component 1: 

  

 1 1 1 1( , , ) ( , , )L L V VT p x T p x     

 
1 11 1

1

( , ) ln ( , ) ln ln
/L VL V

L i

p p p
T p RT x T p RT x RT

M p
 




   




       (7.22) 

 

where (7.10-11) have been used. Choosing as reference the pressure at which the chemical potential of 

the pure vapour equals that of the pure liquid (i.e. the vapour pressure of component 1 pure: p1
*), 

neglecting the pressure term in the liquid phase, and combining the logarithms, one gets what is known as 

Raoult's law: 

 

 
*

1 1

1

( )V

L

x p T

x p
  (7.23) 

 

that may be read as follows: a component 1 in a two-phase binary mixture dissolves in the vapour-phase 

proportional (not linearly) to temperature, and dissolves in the liquid phase proportionally to pressure. 

 

And similarly for the other component:  

 

 
*

1 2

1

1 ( )

1

V

L

x p T

x p





 (7.24) 

 

To know the state of a two-phase binary system at given T and p, the composition of both phases can be 

found with Eqs. (7.23-24). To know the proportion of each phase we need some global variable, usually 

the overall composition measured by the global molar fraction of one component, x01, i.e. the amount of 

substance 1 in all phases (0 stands for 'all phases') divided by the total amount of all substances, and 

thence: 

 

  01 1 0 1 01V V L Vx x x x x      and    01 1 0 1 01 (1 ) (1 ) 1V V L Vx x x x x       (7.25) 

 

where xV0 (xL0=1xV0) is the molar fractions in the vapour phase (defined as the total amount of substance 

in this phase, '0' now stands for 'all components', divided by the total amount of substance in the system).  

 

From the global molar volume of the two-phase binary mixture, v=xL0vL+xV0vV, the global density  can 

be found, M/=xL0ML/L+xV0MV/V=xL0ML/L+xV0RT/p, or, assuming the two molar masses of the same 

order of magnitude, and the same for liquid densities and gas densities, the straightforward relation 
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1/=xL0/L+xV0/V, since, with these assumptions, molar fractions are equal to mass fractions. Notice 

however that the direct interpolation =xL0L+xV0V, is not applicable to two-phase mixtures (it can only 

be applied to the liquid state, as said before); however, =LL+VV is valid if the ’s are volume 

fractions instead of mass or molar fractions. 

 

It can be easily shown that, for a given input set (T,p,x01), the system of 3 equations (7.23-25) with 3 

unknowns (xV1, xL1, xV0) reduce to a single equation in xV0: 

 

 
 

 

  

 

*
1 01 2 01

0 1 0 2

1 1 1 ( )
0, with  1..2

1 1 1 1

Vi i
i

V V Li

K x K x x p T
K i

x K x K x p

  
    

   
 (7.26) 

 

i.e., a second order polynomial in xV0 that has a solution only if K1 and K2 are at different sides of unity. 

After solving (7.26) for xV0, the others, xV1 and xL1, are obtained from (7.23-24). 

 

It is not difficult to generalise (7.26) to any multi-component non-ideal mixture in vapour-liquid 

equilibrium: 

 

 
 

 
0

1 0

1
0, with  1..

1 1

C
i i Vi

i

i V i Li

K x x
K i C

x K x


  

 
  (7.27) 

 

what is known as Rachford-Rice equation, where the K-values for each component, defined as the ratio of 

molar fraction in the vapour phase divided by molar fraction in the liquid phase, must be also supplied as 

input data for non-ideal mixtures, whereas they are given by the pressure quotient in (7.26) for ideal 

mixtures. Once xV0 is found from (7.27), xVi and xLi are obtained from: 

 

 
 

0

0

, , 1..
1 1

i
Li Vi i Li

V i

x
x x K x i C

x K
  

 
 (7.28) 

 

Coming back to ideal binary mixtures, another usual problem is to find the condensation point for a given 

gaseous mixture when cooled at constant pressure or compressed at constant temperature, or conversely, 

to find the boiling point for a given liquid mixture when heated at constant pressure or expanded at 

constant temperature. The equations to solve are: 

 

 Condensation: 
x

x

p T

p

x

x

p T

pL L

01

1

1 01

1

21

1







* *( )
,

( )
 (7.29) 

 Boiling: 
* *

1 11 2

01 01

1( ) ( )
,

1

V Vx xp T p T

x p x p


 


 (7.30) 

 

In the T-x diagram both curves (condensation and boiling) are exponential because of the p*(T)-term, but 

in the p-x diagram the boiling curve is a straight line, as can be easily deduced: 

 

 Boiling at a given T: * *

1 1 1 01 2 01(1 ) ( ) ( )(1 )V Vpx p x p p T x p T x       (7.31) 
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Exercise 3. Liquid air composition  

Exercise 4. Butane bottle  

 

The study of liquid vapour mixtures is substantial to most chemical applications. As a matter of fact, the 

traditional chemical icon is the distiller, in spite of being a physical process without chemical change. The 

still or alembic was first used in Alexandria (Egypt) during the Hellenistic period; the head of the pot was 

called ambix (Gr. head of the still), and in the 7th c. the Arabs named the distillers Al-Ambiq. 

 

Distillation, evaporation, and drying technologies, are thermally-driven energy-intensive processes, 

accounting for some 50 %, 20 %, and 10 % of the industrial separations energy consumption. It is 

important to keep in mind that distillation can not only be forced by heating (as in the traditional alembic) 

but by flashing into vacuum or at least a pressure below the saturation pressure of the feed liquid. For 

instance the traditional means of making drinking water in a vessel was to flash seawater through an 

orifice into a chamber kept under vacuum by a seawater ejector; inside the chamber, a heat exchanger 

heated with the main-engine cooling water vaporises the brine, and a heat exchanger cooled with seawater 

condenses the vapours; two pumps extract the distillate and the residual brine. Reverse osmosis 

desalination systems are, however, replacing nowadays vacuum distillation systems. 

Dilute liquid-gas mixtures. Henry's law 

When a liquid and a gas enter into contact, temperature and, in absence of external force-fields, pressure 

and chemical potential of each species, must equilibrate, what implies that some gas-component must 

dissolve into the liquid phase, and that some liquid-component must evaporate into the gas phase, 

attaining a liquid-vapour equilibrium similar to the one just studied, but which does not respond to the 

ideal mixture model; we distinguish them by calling this one liquid-gas equilibrium (and we change the 

phase name accordingly, from V to G); besides, we identify the two components separately, the liquid one 

as 'dis' (or solvent; from dissolve) and the gas one as 's' (for solute). 

 

The liquid-gas equilibrium is formulated in a similar manner as the liquid-vapour equilibrium; Eq. (22) 

now takes the form, for the originally-liquid species, 'dis': 

 

 
,dis ,dis ,dis ,dis( , , ) ( , , )L L G GT p x T p x    

 
,dis ,dis,dis ,dis

,dis dis

( , ) ln ( , ) ln ln
/L GL G

L

p p p
T p RT x T p RT x RT

M p
 




   




        

     ,dis ,dis,dis

,dis ,dis dis

( , ) ( , )
ln

/

G LL

G L

T p T px p p p

x p RT M

 



     
   (7.32) 

 

which, choosing p equal to the equilibrium vapour pressure of the solvent, p=p*
dis(T), cancels the first 

term in the right-hand-side of (7.32), what leads to Raoult equation if we neglect the pressure-effect on 

the liquid, as before: 

 

 
 *

,dis dis

,dis

ln 0
L

G

x p T

x p
  (7.33) 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Exercise3.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Exercise4.pdf
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However, equilibrium for the originally-gas species, 's' leads to: 

 

 
,s ,s ,s ,s( , , ) ( , , )L L G GT p x T p x     

 
,s ,s,s ,s( , ) ln ( , ) ln ln

Ldis GL G

p
T p RT x T p RT x RT

p
   


      

    ,s ,s,s

,s

( , ) ( , )
ln Ldis GL

G

T p T px p

x p RT

    
  (7.34) 

 

which cannot be cancelled because ∞
Ldis,s is not the potential of species 's' in its pure liquid state but its 

potential in an infinitely diluted solution of solvent 'dis' (that is why subindex L was changed to Ldis). 

Consequently, Raoult's law no longer applies to the gas solute, but, as pressure-effects in condensed 

phases can be neglected, the right-hand-side of (7.34) is just a function of temperature, and (7.34 can be 

written as: 

 

 
,s

s,dis

,s

ln ln ( )
L xp

G

x p
K T

x p



 ,   or   
,s

s,dis

,s

ln ln ( )
L cc

G

c
K T

c
 , with 

,s ,s ,

,s ,s ,

L L L m

G G L m

c x RT

c x p M


  (7.35) 

 

where c's are molar concentrations, L,m and L,m the density and molar mass of the liquid mixture, R the 

universal gas constant, and s,dis

xpK  and s,dis

ccK  (and several others that could be defined in similar ways 

using different variables and thus having different values and units), are loosely called Henry's constants 

(they depend on temperature), in honour of W. Henry, who in 1803 was the first to notice that gases 

dissolve in liquids proportionally to the applied pressure (before Raoult developed in 1883 the theory of 

ideal solutions). Values of Henry's law constants and further details of solutions can be found aside. 

 

Raoult's and Henry's laws may be written in terms of the equilibrium partial pressures in the gas phase, 

pi,G, corresponding to a molar fraction dissolved, xi,L, in the short form (good as a mnemonic): 

 

 
*

, ,( )i G i i Lp p T x  (Raoult's law) (7.36) 

 
, ,( )i G i i Lp H T x  (Henry's law) (7.37) 

 

where Hi(T) is just another instance of 'Henry constant', s,dis( ) xp

iH T p K . 

Dilute liquid-solid mixtures 

When a liquid and a solid enter into contact, temperature and, in absence of external force-fields, pressure 

and chemical potential of each species, must equilibrate, what implies that some solid-component must 

dissolve into the liquid phase, and that some liquid-component must diffuse into the solid phase, attaining 

a liquid-solid equilibrium similar to the liquid-vapour equilibrium studied above, but which does not 

respond to the ideal mixture model. If we identify the two components separately as before, the liquid one 

as 'dis' (or solvent; from dissolve) and the solid one as 's' (for solute), the liquid-solid equilibrium is 

formulated in a similar manner as the liquid-vapour equilibrium; Eq. (7.22) now takes the form, for the 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.pdf
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originally-solid species, 's', that dissolves (the originally-liquid species, 'dis', has so little mobility in the 

solid phase that in most circumstances it can be assumed non-diffusing or not at equilibrium): 

 

 
,s ,s ,s ,s( , , ) ( , , )L L S ST p x T p x     

 
,s ,s

*

,s( , ) ln ( , )
Ldis SLT p RT x T p     

    
,s ,s

*

,s

( , ) ( , )
ln Ldis S

L

T p T p
x

RT

  
  (7.38) 

 

which, as before, cannot be cancelled because ∞
Ldis,s is not the potential of species 's' in its pure liquid 

state but its potential in an infinitely diluted solution of solvent 'dis' (that is why subindex Ldis was used 

instead of L). The right-hand-side of (7.38) is just a function of temperature since pressure-effects in 

condensed phases can be neglected, but it does not receive a special name.  

 

When dissolving ionic solids (and other polar covalent molecules in any phase state) into polar liquids, 

there is a splitting of part of the solute molecules into its component ions, what gives way to electrolytic 

solutions. 

 

Values for the equilibrium functions of solubility, and further details of solutions can be found aside. The 

main idea to keep in mind is that the thermodynamic model for non-ideal mixtures require additional data 

on top of the pure-component-data, but there is some underlying structure in the data; e.g. the variation of 

solute solubility with temperature is directly related to the enthalpy of solution, as the variation of vapour 

pressure is directly related to the enthalpy of vaporization in pure substances. 

ENERGY AND EXERGY OF IDEAL MIXTURES 

We now want to know how much energy is needed to heat a multiphase mixture, and how much work is 

needed to separate a multiphase mixture or change its composition. 

 

Energy, for an ideal two-phase mixture, is just the simple addition of the energies of every component in 

every phase; by unit of total amount of substance: 

 

    0 1 1 2 2 0 1 1 2 2( , , )ij V V V V V L L L L Lh T p x x x h x h x x h x h     (7.39) 

 

where the enthalpies are from (7.18-21), whereas the entropy is: 

 

    0 1 1 2 2 mixing 0 1 1 2 2 mixing( , , )
V Lij V V V V V L L L L Ls T p x x x s x s s x x s x s s         (7.40) 

 

where the entropies for the pure substances in the appropriate phase are computed in a similar manner as 

(7.18-21), and the entropies of mixing are always (7.8) since the mixing and demixing may always be 

done outside of the coexistence two-phase region. 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07sol/Solutions.pdf
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Equation 7.39 teaches that the energy needed to perform a complete phase change at constant pressure, 

from a saturated liquid mixture at the boiling temperature Tb, to a saturated vapour mixture at the 

condensation temperature Tc (with the same composition) is: 

 

    1 1 2 2 1 1 2 2 ( ) ( )
i i Vi iLV V V L L i Li b b LVb p c bh x h x h x h x h x c T T h c T T            (7.41) 

 

and also teaches that the isobaric thermal capacity during the phase change (that for pure substances was 

infinite), for a two-phase binary mixture is: 

 

 ( , , )
mixp ij

dh
c T p x

dT
  (7.42) 

 

where h is given by (7.39), but taking into account that all the x's in (7.39) change with temperature 

according to (7.23-25). The result is that the isobaric thermal capacity during two-phase boiling is very 

high (inversely proportional to the temperature span for complete boiling), but finite. 

MEMBRANE SEPARATION 

The major industrial separation technologies are: distillation, evaporation, drying, extraction, absorption, 

adsorption, crystallization, membrane, floatation and sieve screening. All flow restrictions (membranes, 

porous media, valves, bends) introduce flow disturbances dependent more or less on the molecular 

structure of the species flowing, what may be used for their separation; i.e. all membranes are selective in 

some degree. Membrane characteristics and usage are summarised in Table 1. 

 

Table 1. Membrane characteristics and usage according to size of pores. 

10-10..10-9 m 10-9..10-8 m 10-8..10-7 m 10-7..10-6 m 10-6..10-5 m 10-5..10-4 m 

Reverse 

osmosis 

Nanofiltration Ultrafiltration Microfiltration Microfiltration Particle 

filtration 

Acetate or 

polyamide 

membranes 

Acetate, 

polyamide or 

polyvinyl 

alcohol 

Polysulfonated, 

polyacrylic, 

ZrO2, Al2O3 

Polymers or 

ceramics 

Polymers or 

ceramics 

Ceramics 

Electron microscope Optical microscope 

Atoms, ions 

and molecules 

<0.2 kg/mol 

Large 

molecules 

<20 kg/mol 

Macro-

molecules 

100 kg/mol 

Small 

living-cells 

Bacteria Spores, pollen 

Gases, water, 

mineral ions 

Dialysis, sugar, 

antibiotics 

Proteins, 

viruses, soot 

Pigment, 

smoke 

Fog, dust 

(flour, talc, ash) 

Hair, mist, very 

fine sand 

p>10 000 kPa p>1000 kPa p>100 kPa p>10 kPa p>1 kPa p<1 kPa 

yield  >10-6 m/s >10-5 m/s >10-6 m/s >10-4 m/s >10-3 m/s >10-2 m/s 

 

Basically, microfiltration is centred around the micrometer, and nanofiltration around the nanometer. All 

practical membranes are 0.15 mm thick or more, although the active layer may be less than 1 m beyond 

microfiltration, and their pore size distribution must be according to the filtration wanted; beyond 

ultrafiltration however, the affinity between membrane material and solvent has great influence. 

Electrodialysis makes use of membranes that are selective to one type of electrical charge (two 
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membranes of conjugated selectivity are needed to have a neutral separation); it is used to desalinate 

brackish (low salinity) waters, and to remove urea and uric acid from blood in kidney patients 

(haemodialysis). Reverse osmosis, introduced in 1920 by Manegold, is at present the preferred method of 

water desalination (it was multistage flash vaporisation, in the last third of the 20th c.), from the smallest 

domestic-size to the largest utility-size (e.g. the Carboneras plant at Almería, Spain, where 12 turbopumps 

2.5 MW each, deliver 3.1 m3/s at 7 MPa through 12 000 spiral-type membranes, yielding 1.4 m3/s of pure 

water, less than 0.4 kg/m3 of total dissolved solids, at a price of 15 MJ/m3). 

COLLIGATIVE PROPERTIES 

Amongst the properties of mixtures that only depend on total amount of substance and not of their types, 

one has (only valid for ideal mixtures): 

 

 Pressure of a gas mixture: p n RT Vi /  (7.43) 

 Vapour pressure with a solute: p p xv v s *( )1  (7.44) 

 Boiling point with a solute: T T
RT

h
xb b

b

LV

s *
*2

 (7.45) 

 Freezing point with a solute: T T
RT

h
xf f

f

SL

s *

*2

 (7.46) 

 Osmotic pressure with a solute: p p n RT Vs * /  (7.47) 

 

The deduction of these equations, by simply establishing the equality of chemical potentials, is left for the 

exercises. 

 

Most of these colligative properties can be used to characterise a species in a mixture (e.g. to find the 

molar mass of a solute from the change in melting or boiling point of the mixture, from the osmotic 

pressure, etc.). Further details of solutions can be found aside. 

TYPE OF PROBLEMS 

Besides housekeeping problems of how to deduce one particular equation from others, the types of 

problems in this chapter are: 

1. Find the gradient in composition in the equilibrium of a mixture in an external force field. 

2. Find the minimum required work to separate a component from a mixture. 

3. Find distribution of substance in a two-phase binary mixture. 

4. Determine concentrations (or even molar masses if the concentration is known) from colligative 

properties. 

 

Back to Index 
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