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ENTROPY 

Entropy is important for two main reasons: 

 Entropy is a basic concept in physics and information science, being the basic measure to compare 

different states of an isolated system (the information content of a description). Entropy is the basic 

thermodynamic variable that serves to define and relate most thermal properties of matter, and the 

equilibrium state (for an isolated system, the one with maximum entropy, what is known as the 

Second Law of thermodynamics).  

 Entropy is involved in the computation of maximum and actual efficiencies on most useful 

engineering processes, what serves to categorise the goodness of realisations, and pinpoint where 

enhancements can be more profitable 

Entropy concept 

We have seen before that energy is a scalar magnitude of the state of a system that is conservative for 

isolated systems, which we may visualise as an integral function associated to the motions and positions of 

its microscopic particles, and that we can easily measure macroscopically as the adiabatic work transfer 

between two states.  

 

Now we intend to introduce a state variable that measures the distribution of energy and other magnitudes 

inside the system. The aim is not to measure any distribution but to characterise the most probable 

distribution, i.e. the distribution to be expected after an isolated system has had time to loose its initial-state 

information (due to the practical impossibility to totally avoid the interaction between the system and its 

surroundings). The statistical variable introduced to measure the distribution is named entropy, S, still not 

a common term to the general public but a scientific-jargon concept for the initiated; the author often gives 

the following explanation when asked by a lay person: 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c01/Energy.pdf
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 Entropy is a measure of the uncertainty on the state of things (the reason why everybody should bet 

at 7 in the two-dice game), a measure of how energy and other extensive quantities distribute within 

available constraints in a thermodynamic system. And so on, depending on the feedback obtained: 

 We lack an intuitive quantification of entropy (in comparison with energy being related to the speed 

and height of a mass), but we all have a qualitative feeling of entropy: everything tends to get 

dispersed, all motion tends to die out, all objects tend to thermalise... Furthermore, there is more 

empirical evidence on the fact that energy tends to spread out, than on the fact that energy is 

conservative. 

 Entropy (think as dispersion), tends to a maximum within applied constraints. Sometimes, 

maximum entropy yields 'a uniform distribution' (e.g. density and composition in room air), but 

most often not (e.g. density and composition in a gravity field).  

 By the way, entropy is the reason why oxygen in the air, which is heavier than nitrogen, does not 

fall to the ground (the tendency to fall is outweighed with the tendency to disperse). 

 Entropy measurement in Thermodynamics is nearly as simple as energy measurement: energy in a 

control-mass system increases when work or heat is added (thing on a piston-cylinder system with 

trapped air, and how work and heat can be measured); system entropy does not change when work 

is added 'smoothly', and it increases in the amount dS=dQ/T when heat is added 'smoothly', T being 

absolute temperature (whose zero is unattainable). 

Equilibrium 

It is a fact of Nature (known as Second Law of Thermodynamics) that an isolated system, no matter how 

its magnitudes are initially distributed inside (its density, velocity or energy fields), evolves towards a 

unique state of minimum bias, called the equilibrium state, in which the averaged uncertainty of the 

distribution, i.e. its entropy, takes a maximum value. Notice the change in perspective from 'causal' laws 

describing the change caused by a force, as in Newton's Mechanics, F ma , to 'teleological' laws 

describing the purpose of the change: here, to maximise the entropy of isolated systems (in Hamilton's 

Mechanics, to minimise the action; in Optics, to minimise the time of travel). 

 

However simple the above statement of the Second Law appears (in terms of maximum entropy), the most 

common statement is based on heat engines (to be explained in the next chapter: Exergy), stating that it is 

not possible to cyclically generate work from a single heat source (Kelvin-1851); another widely cited 

statement is based on heat flow: it is not possible to transfer heat from a cold body to a hot body without 

any changes in the environment (Clausius-1854). 

 

The time to reach equilibrium, i.e. the relaxation time, will be proportional to the size of the system because 

the forces are mainly local (molecular interaction), thus, for every user-selected time interval, small enough 

subsystems have already reached its equilibrium state (maximum entropy). Thermodynamic equilibrium 

requires complete equilibrium, i.e.: 

 Mechanical equilibrium, i.e. no accelerations, and thus net 0iF F   and 

net 0i iM r F   . 

 Thermal equilibrium, i.e. no heat transfer, and thus uniform temperature. 

 Chemical equilibrium, i.e. no mass diffusion or reactions. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c03/Exergy.pdf
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The above-mentioned concept of entropy as the averaged uncertainty of a distribution, was stated in 1948 

by the mathematician C. Shannon working at Bell Labs on Information Theory, trying to measure 

uncertainty, but the name entropy was coined in 1865 by the thermodynamicist R. Clausius for the integral 

of the heat input divided by temperature along a reversible process in a thermal system, based on the concept 

he introduced in 1850 to measure 'what changes, after everything recovers, after a cycle'. Already in 1877, 

L. Boltzmann showed that entropy, S, was proportional to the number of equally-probable microscopic 

states, , in the way S=kln, so that the equilibrium state is the one with most chances (really he said 

proportional to the statistic weight of possible states; states can only be numbered with quantum theory, 

and, only if states can be numbered, can absolute entropy be defined). In the 1930s, A. Eddington labelled 

entropy as 'the arrow of time' and linked it to the expansion of the Universe, quantified by E. Hubble in 

1929; notice that, before the Theory of Heat, by Fourier in 1822, theoretical Physics was time-reversible 

(i.e. time-symmetric; e.g. F=md2x/dt2 is the same for time-advance than for time-reversal). This 

contradiction (of particle mechanics being time-symmetric whereas Thermodynamics showing a unique 

direction in time) is known as Loschmidt's paradox. 

 

We intend now to obtain the Clausius result starting from the more general and intuitive concept of 

Shannon, but many other authors prefer the original approach of introducing entropy from the behaviour of 

heat engines, one of the key applications of Thermodynamics (see Chap. 3: Exergy). Furthermore, instead 

of focusing on thermodynamic functions: Energy, Entropy, Exergy…, many books present 

Thermodynamics as a sequence of Principles: Zeroth Law (thermometry), First Law (calorimetry, 

basically), Second Law (heat engines, basically), and Third Law (thermochemistry). 

The method of partitions release 

Consider a partition or distribution of extensive variables in an isolated system; it may range from a two-

part hot and cold partition, to the intermediate partition with many subsystems as sketched in Fig. 2.1, to 

the extreme consideration of a single distinguishable quantum state (identified by its quantum numbers). 

The distribution is characterised by the amounts of extensive magnitudes belonging to each subsystem. Let 

P={p1,p2,...pn}, with pi0 and pi=1, be a probability distribution function, such that pi is the probability 

that the isolated system is found in state i, amongst all the possible states compatible with the fact that the 

system is isolated and thus its mass, volume, linear momentum, angular momentum, and energy, remain 

unchanged. If we call uncertainty of the microstate i to -lnpi, then the average uncertainty for the distribution 

considered is pilnpi, were the sum extends to all possible states i compatible with the restrictions. 

Modified with a scalar factor, this average uncertainty is named the (Shannon) entropy of the system: 

 

 S k p pi i   ln  (2.1) 

 

where k is the Boltzmann constant k=1.38·10-23 J/K in Thermodynamics (in Information Theory, k=1/ln2 

bit, or k=1 nat, are chosen, instead; a nat is the natural unit for information entropy, based on natural 

logarithms and powers of e, rather than the powers of 2 and base 2 logarithms which define the bit). When 

in 1961 M. Tribus asked Shannon about the genesis of (2.1), the latter answer (quoted by Tribus in Sci. 

Am. 1971, p. 180): “My greatest concern was about what to call it. I thought of calling it ‘information’ but 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c03/Exergy.pdf
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the word was overly used, so I decided to call it ‘uncertainty’. When I discussed it with John von Neumann, 

he had a better idea. Von Neumann told me: “You should call it entropy, for two reasons. In the first place, 

your uncertainty function has been used in statistical mechanics under that name, so it already has a name. 

In the second place, and more important, no on knows what entropy really is, so in a debate you will always 

have the advantage.”” 

 

Note that compound probabilities are multiplicative, uncertainties are additive and so is entropy. For 

equally-probable microstates totalising a number , their probability is pi=1/ and (1) yields Boltzmann's 

entropy. Notice, by the way, that if there were just one possible state for the system (the fundamental 

quantum state, with minimum thermal energy, at T=0), entropy would be zero, what is known as Nernst 

theorem (1911) or Third Law of Thermodynamics. 

 

 
Fig. 2.1. A partition in small control masses mk of an isolated system of mass m. 

 

Notice that we should only call 'thermodynamic equilibrium' to a state of maximum entropy in a system, 

i.e. where dS/dt=0 with dSuniv/dt=0, and not to steady states of the system, where dS/dt=0 but dSuniv/dt>0. 

To check that a stationary system is at equilibrium, one should isolate the system and verify that there is no 

evolution. Equilibrium does not mean total absence of motion; macroscopic equilibrium corresponds to a 

dynamic equilibrium at microscopic level (e.g., the same amount of substance vaporising and condensing 

in a liquid-vapour equilibrium). 

Consequences of equilibrium 

We cannot find  or the pi in a generic physical system because of its overwhelming complexity; what we 

want to know is the implication of the entropy being maximum in the state of equilibrium, upon the 

distribution of mass, energy, and so on. To do that, consider the partition sketched in Fig. 2.1, corresponding 

to the distribution of energy and volume of small control masses in a single component isolated system, in 

absence of internal motions and of any external force field so that the energy of the system is just its internal 

energy U. A generic subsystem k has a constant mass mk as chosen, but we want to know what energy Uk 

and volume Vk will correspond to it in the state of equilibrium. The mathematical formulation is: 

 

 S S U U V Vk k k       maximum, constant, constant  (2.2) 

 

The solution is obtained by the method of Lagrange multipliers, i.e. maximising without restrictions the 

combined function S+U+V, with  and  constants, with respect to the independent variables Uk and 

Vk, what yields: 

 

          S U V S U V U Vk k k k k   ( , ) maximum  
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what means that the equilibrium state is characterised by the fact that Sk/Uk=constant and 

Sk/Vk=constant, i.e. the sensitivities of entropy with respect to changes in energy or volume are the same 

at every conceivable subsystem of a system at equilibrium. It is reasonable (to be checked), a fortiori, to 

relate these sensitivities to the traditional ideas of temperature and pressure by: 

 

 
1

T

S

U

p

T

S

VV U

 







,  (2.4) 

 

Notice, by the way, that temperature and pressure so defined cannot have negative values, since the system 

would naturally collapse or disintegrate otherwise (e.g. its kinetic energy would diverge if the total energy 

is constant and the internal energy decreases with entropy). In spite of that, restricted partial systems with 

finite number of states could be defined, resulting in negative temperatures (hotter than positive ones). 

Negative pressures, however can be found in practice in some metastables systems (e.g. Natterer’s tube 

experiment). 

 

Proceeding in a similar manner, one may consider the distribution of linear momentum, m vk k


, imposing 

the conservation of total energy  21
2k k kE U m v  , total linear momentum k kP m v , and total 

angular momentum, k k kL r m v  , with arbitrary velocities 
kv , to conclude that for a system at 

equilibrium the (macroscopic) velocity of each subsystem must be 
   
v a b rk k    with a  and b  vector 

constants, i.e. a solid-body motion (at rest in a suitable reference state). Mind that the rest state at 

equilibrium is only at the macroscopic scale (the fluid particle), but there is always an underlying 

microscopic motion which, in the case of ideal gases, it shows Maxwell-Boltzmann distribution law for 

molecular speeds).  

 

Proceeding in a similar manner, but now taking control volumes instead of control masses, one may 

consider the distribution of chemical species and also include the effect of external force fields, to conclude 

that now  
2

1
2/ i i iT S n M gz M r   

.
=constant, (with Mi the molar mass of substance i, multiplying 

the effect of the linear gravity field and the centrifugal force field), what prompts to the definition of the so 

called chemical potential i (introduced in 1875 by Gibbs): 

 

 
 


i

i U V
T

S

n



,

 (2.5) 

 

The minus sign in the definition of i is introduced because, contrary to tendency of entropy to increase 

with increasing energy and volume, entropy should decrease when more particles must share the same 

energy and volume. As a first approach, one may think of i as a modified concentration ci of species i in 

the mixture, but i not only depends on ci but on the other concentrations cj in the mixture (and on p and 

T). The algebraic value of i (sign and absolute value) is of little interest because it depends on these other 
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mixture parameters, but, in a natural (spontaneous) process, i decreases. For a pure-component system,  

is not an independent variable but a function of p and T. 

Entropy measurement 

We have introduced above direct links between entropy, that difficult-to-measure statistical variable, S from 

(1), and some (apparently) easy-to-measure physical variables, by (2.4) and (2.5), what solves the problem 

of how to measure entropy: by integration of those derivatives. Temperature and pressure measurement 

details can be found aside. Related to this measurability condition, to be further developed below, is the 

answer to the possible doubt about the objectivity of entropy as defined by (1): shouldn't it be a subjective 

measurement, being an information content that is based on probabilities? The answer is that entropy is 

similar to a probability: it can be assigned a priori by the observer according to his/her knowledge, but it is 

only valid if it agrees with the accumulative relative frequency from experiments (like for a dice). In brief, 

we postpone any further statistical interpretation of entropy until Chapter 7: Mixtures, and restrict for the 

moment entropy measurements to the physical derivatives mentioned.  

 

Joining (2.4) and (2.5) one gets the differential form for the entropy as a function of internal energy, volume 

and amount of substance (it cannot depend on momentum or mechanical energy since these have arbitrary 

reference states): 

 

 dS
T

dU
p

T
dV

T
dni

i

i

C

  



1

1


 (2.6) 

 

This important equation can be understood in the following way. Temperature (or 1/T) measures the escape 

tendency of thermal energy (dU), and any temperature gradient forces an energy flux and a corresponding 

entropy generation (see below) by heat transfer. Pressure (in p/T) measures the escape tendency of 

mechanical energy (pdV), and any pressure gradient (in the absence of external fields) forces an energy flux 

and a corresponding entropy generation by friction and viscous dissipation. The chemical potential i of a 

species i (in i/T) measures the escape tendency of chemical energy (idni), and, any chemical-potential 

gradient (in the absence of external fields), will force an energy flux and a corresponding entropy generation 

by mass diffusion. 

 

Substituting the internal energy equation (1.9), in differential form, in (2.6) yields: 

 

 
1

C
mdf i

i

i

dQ dE
dS dn

T T






   (2.7) 

 

Equation (2.6), or its equivalent (knowing that S(U) is monotonous): 

 

dU=TdSpdV+idni,  (2.8) 

 

are sometimes called, indistinctly, the Fundamental Equation of Equilibrium Thermodynamics, although 

equation (2.2), S(U,V,ni)=maximum for U, V and ni constant, is more basic since, beyond (2.6) it states that 

d2S<0 that has not being enforced yet. In fact, this entropy-maximum principle establishes important bounds 

http://imartinez.etsiae.upm.es/~isidoro/lab1/Thermometry/Thermometry.pdf
http://imartinez.etsiae.upm.es/~isidoro/lab1/Piezometry/Piezometry.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixtures.pdf


 

Entropy 7 

to the values of some thermodynamic variables (e.g. thermal capacities cannot be negative; see System 

stability in Chap. 4: Thermodynamic potentials). Notice that S(U,V,ni)=maximum, contains all the 

information on the properties of the system at equilibrium, and that entropy does not depend on total energy 

but on internal energy, because this is the materials constitutive relation, and it cannot depend on the 

observer’s reference frame. Notice also that for the time being we only care about entropy changes, 

computed from (2.6) as shown below, but (2.1) defines entropy in absolute terms, relative to the absolute 

reference, that here is the unique microstate at T=0 K, with the system at its fundamental quantum state (an 

absolute internal energy reference also). 

 

Exercise 1. Direction of heat transfer 

Entropy for perfect substances 

Now that entropy has been related to the traditional variables (T,U,p,V) there is no need to compute it from 

its definition (2.1). For the most important models of incompressible substances and ideal gases, both as 

perfect calorific substances, (2.6) yields: 

 

 
0

0

1
for an incompressible perfect substance   ln

p mcdT T
dS dU dV S S mc

T T T T
       

  

  (2.9) 

 0

0 0

1
for a perfect gas  ln lnv

v

mc dTp mR T V
dS dU dV dV S S m c R

T T T V T V

 
        

 
  

  (2.10) 

 

and for a closed system without friction, from equation (2.7): 

 

 for a reversible process of a closed system   dS
dQ

T
  (2.11) 

 

that was the original definition of entropy by Clausius (he gave it the symbol S, without explanations, even 

before naming this ‘transformation property’ entropy).  

Entropy generation 

For real (i.e. irreversible) processes in a closed system (dni=0), (2.7) implies dSdQ/T, the so called 

Clausius inequality, and it is convenient to define an entropy generation or entropy production variable, 

Sgen, by the difference between entropy increase and entropy flow: 

 

 0gen

dQ
dS dS

T
    (2.12) 

 

where the non-negative constraint comes from the fact that for the system plus its environment, isolated as 

a whole, the total entropy cannot decrease, dSuniv/dt>0. Sometimes, Sgen is labelled Si, and other times ; 

thus, equation (2.12) can be rewritten as dS=dSgen+dQ/T or dS=dSi+dSe, with dSi>0 being the entropy 

change due to internal processes (has to be non-negative) and dSe=dQ/T the entropy change due to external 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Potentials.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Exercise%201.pdf
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flow of entropy through the frontier. Notice that the integrated form of (2.12) is Sgen=S∫dQ/T, since only 

S is a state function (Sgen and Q being path integrals). Entropy flow associated to mass flow in open systems 

is covered in Chap. 5: Control Volume, with the result that (2.12) becomes dSgen=dS-dQ/T-sedme>0, with 

se being the specific entropy of the mass entering the system, dme, by each of the openings (the summation). 

 

Temperature within the system is assumed uniform in (2.12), as usual in the Thermodynamics of systems 

at equilibrium; where the system had a non-uniform temperature, a local integration of dQ/T along the 

frontier should be performed. Another tricky question arises when using uniform temperature systems, and 

it is where to locate the generation of entropy when heat flows from a system at temperature T to an ambient 

at temperature T0; the answer is that an additional interfacial system is needed because the interface has a 

discontinuity that enclose physical properties (see Exercise 2 for further explanations).  

 

It is very important to understand the meaning of 'reversible', which is a short-hand to 'without entropy 

generation'. All natural and artificial processes are irreversible, i.e. generate entropy by friction, heat flow 

or mass flow, and the idealisation of a reversible process in Thermodynamics is similar to the idealisation 

of a frictionless movement in Mechanics. It does not mean that irreversible processes cannot run backwards; 

as Newton's apple fallen to ground can be mechanically forced to rise to its tree, so irreversible processes 

can be thermodynamically forced to recover their initial conditions (even the death of a living being could 

be reversed from the thermodynamic standpoint; it is just that we presently do not know how, although we 

know how to make a new glass from the shattered fragments: by melting them).  

Entropy generation mechanisms 

We have seen that the consequences of thermodynamic equilibrium are the uniformity of temperature, the 

solid-body motion of the system, and the uniformity of chemical potentials in absence of external fields 

(what causes the uniformity of pressure in that case). Non-equilibrium implies non-uniformity of those 

equilibrium parameters, so that entropy generation has to be associated to those non-uniformities, in the 

most basic or ultimate cause. Table 1 gives a key-summary of the basic mechanisms of entropy generation 

in the most general case. 

 

Table 1 Consequences of thermodynamic equilibrium, and basic mechanisms of entropy generation. 

Consequences of equilibrium Causes of entropy generation 

( ) 0T r   ( ) 0T r  , i.e. all kinds of heat transfer 

( ) cm cmv r v r    ( ) cm cmv r v r   , i.e. any relative motion 

  
2

1
2( ) 0i i ir M g r M r          

2
1

2( ) 0i i ir M g r M r       , i.e. any gradient of 

this generalised chemical potential, that for a pure substance 

at rest reduces to (p+gz)0, and, in absence of external 

force fields reduces to p0 (see Gibbs-Duhem equation 

below). 

 

Exercise 2. Bar between thermal blocks 

Exercise 3. Push and release of a piston 

Exercise 4. Maximum temperature in a system 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c05/Control%20volume.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Exercise%202.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Exercise%203.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c02/Exercise%204.pdf
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GIBBS-DUHEM EQUATION 

Equation (2.7), dU=TdSpdV+idni, is also known as Gibbs equation, and it is an homogeneous equation 

of the first order, i.e. with all the terms proportional to the same power on the size of the system: 

U(S,V,ni)=U(S,V,ni), which can be integrated to yield: 

 

 U=TSpV+ini (2.13) 

 

known as Euler equation because of the theorem on integration of homogeneous equation due to Euler. 

Subtracting Gibbs equation from the total differentiation of the Euler equation yields the so called Gibbs-

Duhem equation: 

 

 0=SdTVdp+nidi (2.14) 

 

that relates all the intensive variables of the equilibrium state (T,p,i).  

 

In the case of a pure substance and dividing by the amount of substance one gets 0=sdTvdp+d that may 

explain why temperature and pressure are so familiar concepts and the chemical potential not so much, 

because for a pure substance  is not an independent variable. 

Fluid-static equation 

Substitution of the general conditions for equilibrium (T=0, cm cmv v r    and 

  
2

1
2 0i i iM g r M r        on Gibbs-Duhem equation, yields the generalised fluid-static equation 

(commonly known as the hydrostatic equation): 

 

 0=0Vdp+ni(Migdz+Mi2rdr) (2.15) 

 

For instance, in the case of an incompressible liquid (pure or a mixture), i.e. of constant density =niMi/V, 

integration gives: 

 

 2 21

2
p gz r const     (2.16) 

 

Related to that is the natural segregation of a mixture at equilibrium in a force field. At equilibrium in a 

gravity field d(i+Migz)=0, or i/pdp/dz+i/xidxi/dz+Mig=0, what means, for ideal mixtures 

(i/p=vi=V/n, i/xi=RT/xi) dln(xi)/dz=(MmMi)g/(RT), where xi is the molar fraction of species i of 

molar mass Mi, and Mm is the molar mass of the mixture. 

Liquid-vapour equilibrium 

For a two-phase equilibrium of a pure substance, e.g. liquid-vapour equilibrium (LVE), the consequences 

of equilibrium (in absence of external force fields) is the uniformity of T, p and  not only in each phase 

but also across the interfaces, i.e. in VLE L(T,p)=V(T,p), establishing a relation between temperature and 

pressure: 

 

 p=pV(T) (2.17) 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c07/Mixture%20settling.pdf
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pV(T) being the vapour pressure of the pure substance at that temperature. Besides, subtracting Gibbs-

Duhem equation in the liquid phase, 0=sLdTvLdp+d from that in the vapour phase, 0=sVdTvVdp+d, it 

follows that 0=(sVsL)dT(vVvL)dp, i.e. the pressure variation with temperature at liquid-vapour 

equilibrium, is related to the entropy change and volume change in the form: 

 

 V L

LVE V L

d

d

s sp

T v v





 (2.18) 

 

which is named Clapeyron equation, one of the most important thermodynamic relations. Vapour pressure 

of pure substances is to be analysed in more detail in Chapter 4: Thermodynamic potentials and Chaper 6: 

Phase change.  

System variance 

The variance of a thermodynamic system is the minimum number of intensive variables defining its state, 

i.e. its degrees of freedom. 

 

For a simple compressible substance, i.e. for a constant-composition system, the variance V is two (V=2), 

usually chosen as its temperature and pressure, what means that any other intensive thermodynamic variable 

can be obtained from them (and the knowledge of the system composition, of course). 

 

For a system with C chemically different components that may coexist in P different phases, the variance 

V (or degrees of freedom) is given by Gibbs phase rule: V=2+CP. Sometimes F (for freedom) is used 

instead of V (variance), and  instead of P for phases. The explanation is that there appear 2+C variables 

defining the equilibrium state (T, p and i, in Eqs. 2.4-5), and their only dependence is Gibbs-Duhem 

relation (2.14) for each phase. 

  

If the system can hold R different chemical reactions at equilibrium, Gibbs phase rule extends to 

V=2+CPR.  

TYPE OF PROBLEMS 

Besides housekeeping problems of how to deduce one particular equation from others, and some ancillary 

exercises from probability and statistics to better grasp the concept of entropy, the types of problems in this 

chapter are: 

1. Find if a particular evolution of a system when some internal or external restrictions are released is 

possible or not, under the given constraints (e.g. Exercise 1). Finding the speed or duration of the process 

is also a thermal problem usually addressed by 'extended Thermodynamics' sciences (Heat transfer, 

Fluid dynamics).  

2. Compute entropy changes and entropy generation for a given system between given equilibrium states, 

and verify that isolated systems (the universe) evolve from lower to greater entropy values (positive 

entropy generation). 

3. Find limit values to particular system variables (imaging zero entropy increase, as in Exercise 3). 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c04/Potentials.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c06/Phase%20change.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c06/Phase%20change.pdf
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